
Integrating Similarity Retrieval and Skyline
Exploration via Relevance Feedback

Yiming Ma, and Sharad Mehrotra ?

Dept. of Information and Computer Science, University of California, Irvine
Irvine, CA, USA

Abstract. Similarity retrieval have been widely used in many practical
search applications. A similarity query model can be viewed as a logical
combination of a set of similarity predicates. A user can initialize a query
model, but model parameters or the model itself may be inadequately
specified. As a result, a retrieval system cannot guarantee that it has
presented all the relevant tuples to the user. In this paper, we propose a
framework that integrates the similarity retrieval and skyline exploration.
Using the relevance feedback as a way to constrain the search space, our
framework can intelligently explore only a necessary portion of data that
contains all the relevant tuples. Our framework is also flexible enough to
incorporate model refinement techniques to retrieving relevant results as
early as possible.

1 Introduction

Similarity retrieval is attractive since it presents results quickly to the user in
relevance order and allows the search to stop when enough results are seen
(as contrasted to a potentially large collection of results from which a user must
choose the relevant ones). A fundamental weakness of the similarity query model
is that it requires a user to accurately specify the model parameters which, given
the complexity of search spaces, might be a difficult (or impossible) task. If the
user does not specify the parameters accurately, the system cannot guarantee to
retrieve all the relevant results. For instance, if the user stops the search after
retrieving k objects because the latest objects retrieved were irrelevant, there
is no guarantee that the unseen objects are also irrelevant. It is possible that
the best answer resides in the unseen results. One approach that can guarantee
the answer set containing best results is by using a skyline [1]. In a skyline
setting, the system pessimistically assumes no knowledge of the query model;
it knows only the similarity predicates in a user’s search. Instead of returning
objects based on relevance to the user, a skyline operator returns a set of objects
that are not dominated by any other object in at least one similarity dimension
(formed by a similarity predicate). This way, the top result is guaranteed to be in
the return set (irrespective of the user’s similarity query model). While skyline

? This research was sponsored by NSF Award number 0331707 and 0331690 to the
RESCUE project

retrieval offers the guarantee to the best results, it suffers from three problems:
(1) the size of the return set (the skyline) may be large and the skyline size
increases as the dimensionality of the similarity space increases, (2) since the
returned objects are no longer based on any ranking criteria (within a skyline),
if a user stops the search prior to viewing the entire skyline, the top results
may be missed, and (3) it is not an interactive process (i.e., does not consider
relevance feedback).

In this paper, we build a search strategy that combines the positive aspects
of both similarity retrieval and skyline retrieval into one single technique, so
that we can retrieve results in the order of relevance, yet support the notion of
completeness. The key aspect of our technique relies on exploiting the relevance
feedback gathered from a user. We use relevance feedback in two ways, which
also represent the major contributions of this work:

• Initialized by a ranked retrieval, we use irrelevant (negative) feedback to
progressively form an interactive skyline (I-Skyline), which dynamically con-
strains the search space (Section 3).

• Using both relevant (positive) and irrelevant (negative) feedback, we in-
troduce query model refinement techniques to improve the search quality; so
that the relevant tuples will be retrieved more effectively from the search space
bounded by I-Skyline (Described in the full version [3]).

2 Related Work

To the best of our knowledge, no previous work uses relevance feedback as a
bridge to effectively integrate similarity retrieval and skyline retrieval. Our work
significantly differs from these retrieval and refinement approaches (e.g., [4, 7])
since we focus on the existing query formulation, and attempts to give a user a
sense of the query completion as we dynamically prune the search space based
on the user feedback. In addition, our refinement techniques are built on top
of the dynamic search space. The techniques are not available in any of the
refinement systems since those systems may alter the query formulation (e.g.,
predicate addition/deletion). During a search session, a user may never know if
his initial query has been completed or not. In fact, he may be even confused
by the returned tuples since he does not know the exact query formulation used
to rank the returned tuples. Our work is also very different from the work on
skyline (e.g., [5]), which mainly focus on the efficiency issues. Many of these
techniques assumes the ranking function is defined in a feature/data space, and
an index structure (e.g., R-tree) is available in the feature space. By making these
assumptions, it imposes limitations on the query, such that every attribute can
appear at most once in the query, and similarity predicates can only use distance
measures in the feature space. Therefore, it does not support general similarity
queries. Furthermore, it does not exploit the relevance feedback information to
bound the search space or refine the ranking function.

2

P1: MinPrice (Price, 150)
P2: MinStop(#Stop, 0)
P3: MinFlightTm(FlightTm, 2.5)
P4: ArrTm (ArrTm, 1500)
Query Model: (P1 ∨ (P2 ∧ P3)) ∧ P4

Fig. 1. Example Similar-
ity Predicates and Query
Model

OR

P1

P2

W3
W4

P3

P4

W5 W6

AND

W1 W2

AND

Fig. 2. A Logic Tree
(P1 ∨ (P2 ∧ P3)) ∧ P4

1

2

3

4

1.0

1.0

P1: LeastPrice(Price, 150)

P
3

:
 L

e
 a

s
tT

m
(
F

l i
g

h
tT

m
,2

 .5
)

Fig. 3. Skyline on P1,
P3

Terminology Explainations
Similarity Predicate Similarity based logic predicate.
Query Model (Q) A logic combination function built on top of the similarity predicates.
Logic Combination Function Used exchangeably with query model.
Monotone Function Defined in [2], a query model is also a monotone combination function.
Parameters in Query Model Weights and p values used in the query model (P-Norm [6]).
Logic Tree (LT) An operator tree representation of query model.
Full Similarity Space (FS) A similarity space defined by all the similarity predicates.

Fig. 4. Terminologies

3 I-Skyline Framework

In Figure 4, we summarize the concepts and the terminologies used in this paper.
In this paper, we assume that users can specify all the similarity predicates of
interest to their information needs. We focus on the similarity query model which,
when similarity semantics are involved, can be difficult to specify correctly. For
instance, a flight ticketing database has four attributes: price, number of stops,
flight time, and time of arrival. A typical query is to find flights that conform to
a certain desirable hypothesis expressed as a similarity query. In our example,
the search has four similarity predicates: MinPrice, MinStop, MinFlightTm
and ArrTm with obvious semantics. Figure 1 shows an example of similarity
predicates and a query model. Given a data tuple, the query model aggregates
the predicate level scores to a single relevance score using a set of logical operators
(AND, OR). A user invokes this query to find a flight with the cheapest fare
or least number of stops with the shortest flight time; the flight should also
arrive in Seattle at around 3pm. (P1 ∨ (P2 ∧ P3)) ∧ P4 nicely captures this
search request. In general, a query model using logical operators can be always
viewed as an operator tree. Figure 2 shows such an operator tree; an internal
node is a logical operator, and a leaf node corresponds to a similarity predicate.
Outgoing edges from an internal node connect the components used in a logical
operator. In this paper, we use P-Norm [6] to interpret logical operators. Because
of the tunable parameters (weights and P values), the P-Norm can be expressive.
However, if the initial parameter settings of a query model differ from the ideal
ones, the order of the returned tuples can change considerably. Skyline could
be utilized to retrieve the best answer. Given any d similarity predicates, if we
define a d-dimensional space on these predicates and project data points into
the space using their similarity scores, the skyline is guaranteed to consist the

3

Input: Database(D), FullSimSpace(FS), Monotone Comb. Func. (F)
Output: I-Skyline, RelevantSet

1: I-Skyline = ∅, RelevantSet = ∅
2: RL=compute RankedList(D, FS, F)
3: for each tuple t in RL do
4: if t is NOT Dominated by any tuple t2 ∈ I-Skyline then
5: FB = getFeedbackFromUser(t)
6: if FB == Irrelevant then
7: I-Skyline.insert(t) // Grow I-Skyline set.
8: else
9: RelevantSet.insert(t) // Grow Relevant set.

Fig. 5. I-Skyline Base

best point under any monotone query models [1]. Figure 3 shows an example
of a 2-dimension space defined on predicates P1 and P3 in Figure 1. A skyline
retrieval will return tuples 1,2 and 4.

Instead of retrieving one best record as the skyline retrieval, in this paper,
the goal is to retrieving all the relevant tuples. We assume there is an optimal
query formulation Qopt. The relevant tuples are a list of top tuples that having
similarity scores above a threshold τ . Without knowing the Qopt and τ , the
problem is how to retrieve all the relevant tuples with minimum number of
irrelevant tuples given an initial query Q.

We now present the framework I-Skyline algorithm called I-Skyline Base in
pseudo-code (Figure 5). We first define I-Skyline as a skyline on all irrelevant tu-
ples in a given full similarity space FS (Figure 4). The algorithm I-Skyline Base
sits in between a ranked retrieval system (line 2) and a user. It interacts with
the user (line 5) and progressively selects tuples that the user needs to see (line
3 to 9). During the process, only two sets – I-Skyline set and Relevant set – are
dynamically constructed (line 7 and line 9). It can be formally proved that these
two sets contain necessary (optimal) set of tuples that the user needs to interact
with if there is no prior knowledge to the query model.

The baseline algorithm can be easily extended and enhanced in various ways
such as exploiting the partial knowledge provided to the query structure or
aggressively improving the retrieval quality by incorporating various refinement
and learning techniques. In the full version of this paper [3], we provide detail
discussions and extensive evaluations to these strategies.

References
1. S. Borzsonyi, D. Kossmann, and K. Stocker. The skyline operator. In ICDE. 2001.
2. R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for middleware. In PODS,

2001.
3. Y. Ma and S. Mehrotra. I-skyline: A systematic approach in integrating similarity retrieval and

skyline exploration via relevance feedback. UCI Technical Report available at http://www. ics.
uci. edu/˜ maym/publications/iskyline. pdf, 2006.

4. Y. Ma, S. Mehrotra, and Q. Zhong. RAF: An Activation Framework for Refining Similarity
Queries Using Learning Techniques. In DASFAA, 2006.

5. D. Papadias, Y. Tao, G. Fu, and B. Seeger. An optimal and progressive algorithm for skyline
queries. In SIGMOD, 2003.

6. G. Salton, E. Fox, and H. Wu. Extended boolean information retrieval. Communications of the
ACM, 1983.

7. L. Wu, C. Faloutsos, K. Sycara, and T. Payne. FALCON: Feedback adaptive loop for content-
based retrieval. In VLDB, 2000.

4

