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Abstract

In this paper, we considerHybrid Mixed Net-
works (HMN)which are Hybrid Bayesian Net-
works that allow discrete deterministic informa-
tion to be modeled explicitly in the form of con-
straints. We present two approximate inference
algorithms for HMNs that integrate and adjust
well known algorithmic principles such as Gen-
eralized Belief Propagation, Rao-Blackwellised
Importance Sampling and Constraint Propaga-
tion to address the complexity of modeling and
reasoning in HMNs. We demonstrate the perfor-
mance of our approximate inference algorithms
on randomly generated HMNs.

1 INTRODUCTION

In this paper, we present and evaluate approximate infer-
ence algorithms for Hybrid Mixed Networks which are Hy-
brid Bayesian Networks that contain discrete deterministic
information in the form of constraints. Our work is mo-
tivated by a real-world application of reasoning about car-
travel activity of individuals. This application was modeled
using Dynamic Bayesian Networks and requires expressing
discrete and continuous variables as well as deterministic
discrete constraints.

The two popular approximate inference algorithms used for
inference in Dynamic Bayesian Networks (DBN) are Rao-
Blackwellised Particle Filtering [Doucet et al., 2000] and
Expectation Propagation [Heskes and Zoeter, 2002]. These
algorithms use Importance Sampling, exact inference and
Generalized Belief Propagation (GBP) on a Bayesian Net-
work, which is a basic structural component of a DBN. We
seek to extend these algorithms to our application in which
the basic structural component is a Hybrid Mixed Network
(HMN).

We show how exact inference algorithms like join-tree
clustering and a parameterized GBP algorithm called It-

erative Join Graph Propagation (IJGP) can be extended
to HMNs in a straightforward way. However, extending
Rao-Blackwellised Importance Sampling algorithms (RB-
Sampling) to HMNs using the straightforward way results
in poor performance. This is because in HMNs every sam-
ple that violates a constraint will receive zero weight and
will be rejected. To remedy this problem, we suggest a new
Importance Sampling algorithm called IJGP-RB-Sampling
which uses the output of IJGP as an importance function
and we view it as the main contribution of this paper.

We performed experiments on random HMNs to compare
how IJGP, pure RB-Sampling and IJGP-RB-Sampling per-
form relative to each other in terms of accuracy when given
the same amount of time. Our empirical results suggest
that IJGP-RB-Sampling is always better than pure RB-
Sampling and dominates IJGP as the constraint tightness
increases.

The rest of the paper is organized as follows. Section 2
defines HMNs and presents some preliminaries. In the
two subsequent sections, we describe how to extend join
tree clustering and Iterative Join Graph Propagation to
HMNs. We follow by describing IJGP-RB-Sampling for
performing effective Rao-Blackwellised Importance Sam-
pling in HMNs. We then present empirical results on ran-
dom HMNs and conclude with a discussion of related work
and summary.

2 PRELIMINARIES AND DEFINITIONS

A graphical model is defined by a collection of functions,
over a set of variables, conveying probabilistic or determin-
istic information, whose structure is captured by a graph.

DEFINITION 2.1 A graphical model is a triplet (X,D,F)
where 1.X = {x1,x2, . . . ,xn} is a finite set of variables, 2.
D = {D1, . . . ,Dn} is a set of domains of values in whichDi

is a domain ofXi and 3. F = {F1,F2, . . . ,Fm} is a set of
real-valued functions. The scope of functionsfi denoted as
scope(fi) ⊆ X, is the set of arguments offi .



DEFINITION 2.2 The primal graph of a graphical model
is an undirected graph that has variables as its vertices
and an edge connects any two variables that appear in the
scope of the same function.

Two graphical models of interest in this paper are Hy-
brid Bayesian Networks and Constraint Networks. AHy-
brid Bayesian Network (HBN) [Lauritzen, 1992]B =
(X,D,P) is defined over a directed acyclic graphG =
(X,E) and its functionsPi = {P(xi |pai)} where pai is
the set ofparent nodes ofxi . X is the set of variables
partitioned into discrete∆ and continuousΓ variables,
i.e. X = Γ

⋃
∆. The graph structureG is restricted in

that continuous variables cannot have discrete variables
as their child nodes. The conditional distribution of con-
tinuous variables are given by a linear Gaussian model:
P(xi |I = i,Z = z) = N(α(i) + β(i) ∗ z,γ(i)) xi ∈ Γ where
Z and I are the set of continuous and discrete parents of
xi respectively andN(µ,σ) is a multi-variate normal dis-
tribution. The network represents a joint distribution over
all its variables given by a product of all its CPDs. A
Constraint network [Dechter, 2003]R = (X,D,C), has
C = {C1,C2, . . . ,Cm} as its functions also called as con-
straints. Each constraintCi is a relationRi defined over a
subset of the variablesSi ⊆ X and denotes the combination
of values that can be assigned simultaneously. ASolution
is an assignment of values to all the variables such that no
constraint is violated. The primary query is to decide if the
Constraint Network is consistent (whether it has a solution)
and if so find one or all solutions.

Using the Mixed Network frame-
work [Dechter and Mateescu, 2004] for augmenting
Bayesian Networks with constraints, we can extend HBNs
to include discrete constraints, yieldingHybrid Mixed
Networks (HMNs). Formally,

DEFINITION 2.3 (Hybrid Mixed Network) Given a HBN
B = (X,D,P) that expresses the joint probabilityPB and
given a Constraint NetworkR = (∆,D∆,C) that expresses
a set of solutionsρ, a Hybrid Mixed Network (HMN) based
on B and R denoted byM(B,R) is created fromB and R
as follows. The discrete variables∆ and their domains are
shared and the relationships include the CPDs inP and the
constraints inC. We assume that the Constraint Network
is always consistent and so the HMN expresses the con-
ditional probability PM(X):PM(x) = PB(x|x∈ ρ) i f x ∈ ρ
and0 otherwise.

Example 2.1 Figure 1 shows a HBN and a Constraint Net-
work yielding a HMN over variables{A,B,C,D,F,G} where
D andG are continuous variables (drawn as squares) and
the rest are discrete (drawn as circles).

DEFINITION 2.4 (Graph Decomposition)Given a graph-
ical model (X,D,F), a graph decomposition is a triplet
(GD,χ,ψ) whereGD(V,E) is a graph andχ and ψ are

Figure 1: Example HMN consisting of a HBN and a Con-
straint Network

labeling functions which associate with each vertexv ∈ V
two sets,χ(v) ⊆ X and ψ(v) ⊆ F such that, (1) For each
function fi ∈ F, there is exactly one vertexv ∈ V such
that fi ∈ ψ(v), and scope( fi)⊆ χ(v), (2) For each variable
xi ∈ X, the set of{v ∈ V|xi ∈ χ(v)} induces a connected
subgraph ofG (called the running intersection property).

The width of a graph-decomposition isw = max|χ(v)| −
1. A join-tree-decompositionis a graph-decomposition in
which the graph is a tree whilejoin-graph-decompositions
(JG(i)) are graph-decompositions in which the width is
bounded byi.

Example 2.2 Figure 2 showing (a) primal graph, (b) join-
graph-decomposition and (c) join-tree-decomposition of
the example HMN shown in Figure 1.

Another relevant notion is that ofw-cutset. Given a graph-
ical model(X,D,F) , the w-cutsetis the set of variables
X1 ⊆ X whose removal from the graphical model yields a
graphical model whose treewidth is bounded byw.

This paper focuses on the problem of computing the poste-
rior marginal distribution (or beliefs) at each variable given
evidence i.e.P(xi |e). This problem is known to be NP-hard
and so we resort to approximations.

3 EXACT INFERENCE IN HMNs

In this section, we extend a class of exact inference algo-
rithms based on join-tree-clustering [Lauritzen, 1992] from
HBNs to HMNs. This algorithm will serve as a basis for the
Generalized Belief Propagation scheme described in sec-
tion 4 which will be investigated empirically as a stand-
alone scheme and also as a component in our Importance
Sampling scheme described in section 5.

The join-tree-clustering algorithm for HMNs can be de-
rived in a straightforward way by incorporating ideas from
[Lauritzen, 1992] and we describe it here for complete-
ness sake (see Figure 3). The exact inference algorithm
in [Lauritzen, 1992] works by first forming a join-tree-



Figure 2: Graph decompositions of HMN in Figure 1.

Algorithm Join-tree-clustering-hmn

• Input: A Hybrid Mixed NetworkMN = (X,D,P,C) and Evidencee

• Output: A join-tree-decomposition containing the original functions and
the messages.

1. Instantiate Evidence

2. Create a special-join-tree-decompositionΠ = (GD(V,E),χ,ψ).
3. Select a strong-root α using a method from Lau-

ritzen [Lauritzen, 1992].

4. Let [e1, . . . ,ek] be a DFS-ordering of edges from the strong rootα
of Π.

5. CallMessage-Passing(Π, [e1, . . . ,ek])
6. CallMessage-Passing(Π, [ek, . . . ,e1])

Procedure Message-Passing

• Input: A graph-decomposition(GD(V,E),χ,ψ) for a HMN and an order-
ing of edgesP = [e1, . . . ,ek] whereei ∈ E.

• Output: An graph-decomposition containing new messages and functions.

• for j = 1 to k do

1. Compute messages:Let ej = (u,v)
Computem(u,v), the message that vertexu sends to vertexv,

m(u,v) =

wwwwÄ
u−sep(u,v)

(⊗
f∈cl(u), f 6=m(u,v) f

)

wherecl(u) = ψ(u)∪{m(vk,u)|(vk,u) ∈ E}
2. Send messagem(v j ,v) to v.

Figure 3: Join-tree-clustering for HMNs

decomposition and then passing messages between indi-
vidual cliques of a join-tree-decomposition. A message
from nodeNi to Nj is constructed by first multiplying all
messages and functions inNi excluding the message from
Nj and then marginalizing the product over the separa-
tor betweenNi andNj . The operators of marginalization
⇓ and multiplication

⊗
required for message-passing on

a join-tree-decomposition of a HMN can be constructed
in a straightforward way by combining the operators in
[Lauritzen, 1992] and [Dechter, 2003] that work on HBNs
and constraint relations respectively. We will now briefly
comment on how the multiplication operator can be de-
rived. Let us assume we want to multiply a collection of
probabilistic functionsP′ and a set of constraint relationsC′
(which consist of discrete tuples allowed by the constraint)

to form a single functionPC. Here, multiplication can be
performed on the functions inP′ andC′ separately using
the operators in [Lauritzen, 1992] and [Dechter, 2003] re-
spectively to compute a single probabilistic functionP and
a single constraint relationC. These two functionsP and
C can be multiplied by deleting all tuples inP that are not
present inC to form the required functionPC.

We comment on two major technical points for the algo-
rithm given in Figure 3. Firstly, to be sound the join-tree-
clustering algorithm must satisfy the strong root property
as required by HBNs [Lauritzen, 1992]:

DEFINITION 3.1 (Strong Root) Given a join-tree-
decomposition(GD(V,E),χ,ψ), a node r ∈ V is a
strong-root iff for all neighboring nodesc and d with c
closer tor thand, we have thatsep(c,d) ⊆ ∆ or d\c⊆ Γ
whereΓ is the set of continuous variables and∆ is the set
of discrete variables.

A sufficient condition to ensure that there is at least one
strong root in a join-tree-decomposition is to use an order-
ing for triangulation in which all continuous variables are
ordered before discrete variables. We call such join-tree-
decompositions asspecial-join-tree-decompositions(see
Figure 2(c)).

Finally, because Gaussian nodes can be processed in poly-
nomial time, the complexity of processing each clique is
exponential only in the number of discrete variables in the
clique. We capture this property using the definition of
adjusted-width.

DEFINITION 3.2 Given a join-graph-decomposition
(GD,χ,ψ), theadjusted-width of a join-graph decompo-
sition isw = max|χ(v)∩∆|−1. The adjusted-treewidth of
join-tree-decomposition is equal to its adjusted-width.

It is straight forward to show that [Lauritzen, 1992]:

THEOREM 3.1 Given a HMNMN(X,D,P,C) and evidence
e, algorithm Join-tree-clustering-hmn is sound. For dis-
crete variables, the marginal at each clique computed by
multiplying the messages and functions in each clique is



exact while for continuous variables the marginal is exact
in the sense that it has the correct first and second moments
as the exact marginal.

THEOREM 3.2 The time-complexity of Join-tree-
clustering-hmn isO(|∆| ∗ |Γc|3 ∗ dw∗+1)). Here Γc is
the maximum number of continuous variables in the clique
of a join-tree-decomposition,d is the maximum domain
size of the discrete variables,∆ is the set of discrete
variables in the HMN andw∗ is the adjusted-treewidth of
the special-join-tree-decomposition used.

4 ITERATIVE JOIN GRAPH
PROPAGATION

In this section, we extend an approximate inference al-
gorithm called Iterative Join Graph Propagation (IJGP)
to HMNs. IJGP(i) [Dechter et al., 2002] is parameter-
ized Generalized Belief Propagation algorithm which op-
erates on a join-graph-decomposition having less thani +
1 variables in each clique. The complexity of IJGP(i)
is bounded exponentially byi, also called thei-bound.
This algorithm was defined for discrete Bayesian Networks
in [Dechter et al., 2002].

IJGP(i) can be extended to HMNs in a straight-forward
way by iteratively applying the message-passing procedure
given in Figure 3 to a join-graph-decomposition until a
maximum number of iterations is performed or until the
algorithm converges.

An important technical difference between the exten-
sion of IJGP(i) to HMNs and the original IJGP(i) algo-
rithm [Dechter et al., 2002] is thati stands for adjusted-
width rather than width.

THEOREM 4.1 The complexity of IJGP(i) when applied to
HMN is O((|∆|+ n) ∗ di ∗ |Γc|3) where|∆| is the number
of discrete variables,d is the maximum-domain size of the
discrete variables,i is the adjusted-i-bound,n is the num-
ber of nodes in a join-graph and|Γc| is the maximum num-
ber of continuous variables in any clique of the join-tree-
decomposition used.

5 RAO-BLACKWELLISED
IMPORTANCE SAMPLING

In this section, we propose an effective Importance Sam-
pling for HMNs. We will first review Importance Sam-
pling algorithms for computing posterior distribution and
then revieww-cutset sampling which is a special version of
the Rao-Blackwellisation concept. Subsequently, we dis-
cuss how an Importance Sampling algorithm would run
into problems when hard constraints are present. We end
the section by presenting an algorithm called IJGP-RB-
Sampling that remedies these problems by using Iterative

Join Graph Propagation to generate an effective proposal
distribution.

Sampling methods are used for approximate inference in
Bayesian Networks and are useful in cases when the dis-
tribution is hard to compute analytically using exact in-
ference. The virtue of sampling schemes is that they are
guaranteed to yield the correct posterior distribution when
they converge and they use only linear space. An important
class of sampling algorithms is Importance Sampling for
Bayesian Networks. The idea here is that since we cannot
sample from the true posteriorP(X|e) (while it is NP-hard
to compute), we will sample from an approximationQ(X)
such that the ratiow= β∗P(X = x|e)/Q(X = x)1 is known
up to a normalizing constantβ. We can then compute the
required posterior marginal asP(xi = x|e) = ∑ j f j(x) ∗ w̃ j

where f j(x) is the sample that agrees withxi = x and w̃ j

are the normalized importance weights computed asw̃ j =
w j/∑k wk. Ideally, the proposal distribution should have
the following properties: (1) It is easy to sample from (2) It
allows easy evaluation of the valueQ(X = x) for each sam-
ple so that the weights can be computed in a cost-effective
manner and (3) IfP(X) 6= 0 thenQ(X) 6= 0. The last prop-
erty ensures that Importance Sampling converges to the
true posterior in limit of convergence [Geweke, 1989].

It is well known that any sampling scheme over multi-
dimensional space can be assisted by Rao-Blackwellised
sampling, namely by sampling over a subspace. We
now describew-cutset sampling which is a special ver-
sion of Rao-Blackwellised (RB) sampling.w-cutset sam-
pling [Bidyuk and Dechter, 2003] is a method that com-
bines exact inference and sampling and provides a system-
atic scheme for sampling from a subset of variables. The
idea is that given an assignment to a set of variables it might
be possible to compute the remaining distribution analyti-
cally. More formally, inw-cutset sampling we partition the
set of variablesX into two subsetsX = X1∪X2 such that
the treewidth of the graphical model whenX1 is removed
is bounded byw. Eachw-cutset sample consists of an as-
signment of values toX1 = x1 and a belief stateP(X2|x1).
The variables in the setX1 are sampled and the remaining
X2 variables are solved exactly using exact algorithms like
join-tree-clustering.

We can straightforwardly adaptw-cutset Importance Sam-
pling to Hybrid Bayesian Networks (HBNs). Since exact
inference is polynomial if all nodes are Gaussian,w-cutset
sampling in HBNs can be done by sampling only a sub-
set of the discrete variables [Lerner, 2002]. Extending this
idea to HMNs, suggests that we sample the discrete vari-
ables using a suitable proposal distribution and discard all
samples that violate one or more constraints. This method
can be inefficient. For example, if we use the prior as
the proposal distribution (as in Likelihood weighting) and

1This is usually called Biased Importance Sampling



Figure 4: An ordered Buckets structure for the join-graph-
decomposition in Figure 2. m(x,y) is the message sent by
node x to node y.

the prior is such that solutions to the constraint portion are
highly unlikely, a large number of samples will be rejected
(becauseP(Xi = 0) for a sampleXi and so weight would
be 0).

On the other hand, if we want to make the sample rejec-
tion rate zero we would have to use a proposal distribu-
tion Q such that all samples fromQ are solutions of the
constraint portion. One way to find this proposal distribu-
tion is to make the Constraint Network backtrack-free (per-
haps using adaptive-consistency [Dechter, 2003]) along an
ordering of variables and then sample along a reverse or-
dering. However, adaptive-consistency can be costly un-
less the treewidth of the constraint portion is small. Thus
on one hand, zero-rejection rate implies using a costly in-
ference procedure and on the other hand, sampling from a
proposal distribution that ignores the constraints may result
in a high rejection rate.

We propose to exploit the middle ground between the
two extremes by combining the Constraint Network
and the Bayesian Network into a single approximate
distribution Q using IJGP(i). By using IJGP(i) we
are likely to reduce the rejection-rate because it ap-
plies constraint-propagation in the form of relational
i-consistency [Dechter and Mateescu, 2003] , namely
it removes many inconsistent tuples [Dechter, 2003].
Note that the output of IJGP(i) can be used to
generate a proposal distribution because as shown
in [Dechter and Mateescu, 2003]P(X|e) > 0 implies that
Q(X|e) > 0 whereQ(X|e) is the distribution of IJGP(i).

We now describe a method to generate samples from the
output of IJGP(i). Here, given an orderingπ = 〈x1, . . . ,x j〉
of the discrete variables to be sampled, we first compute an
approximate marginal denoted byQ(x1) from the output
of IJGP(i) and then samplex1 from Q(x1). Then, we set
the sampled valuex1 = a1 as evidence, run IJGP(i), com-
pute the marginalQ(x2|x1 = a1) and samplex2 from this
marginal. The above process is repeated until all variables
are sampled. The method is inefficient however, requir-
ing O(|X1| ∗exp(i)∗N ∗d) time for generating all samples

Algorithm IJGP-RB-Sampling

• Input: A Hybrid Mixed NetworkMN(X,D,P,C) and Evidencee. Integeri, k, w
andN.

• Output: Estimate ofP(X|e).

• Perform Iterative Join-graph propagation on MN withi-bound=i and number of
iterations=k. Let us call its outputΠ.

• Partition the Variables of HMN intoX1 andX2 such that the adjusted-treewidth of
a special- join-tree-decomposition ofX2 is bounded byw.

• Create a bucket-treeBT(V,ψ) from Π such thatV contains only variables inX1.

• For i = 1 to N do

1. si = Generate a sample fromBT along the orderd of BT for the set of
variablesX1.

2. Use join-tree-clustering to compute the distribution onX2 by setting evi-
dence ase∪X1 = si . Lets call itri .

3. Reject the sample ifr i is not a solution.

4. Compute the importance weightswi of si .

• Normalize the importance weightswi .

• Output the samples[si , ri ] and the normalized weightswi

Figure 5: IJGP-RB-Sampling for Hybrid Mixed Networks

whereX1 are the sampled variables,N is the number of
samples,i is the i-bound used andd is the maximum do-
main size.

Instead, we use a simplified method in which IJGP(i) is ap-
plied just once yielding a time-complexity ofO(exp(i) +
N∗|X1|∗d) to generate all samples. The simplified method
uses a special data-structure of ordered buckets. Given
a collection of functions and messages as the output of
IJGP(i) and an orderingπ = 〈x1, . . . ,x j〉 of the discrete
variables to be sampled, we construct the ordered buck-
ets structure as follows. We associate a bucket with each
variablexi in π and consider only those functions and mes-
sages,Fπ whose scope is included in{x j , . . . ,x1}. We then
start processing fromi= j to 1 putting all functions inFπ
that mentionxi in the bucket ofxi . Once the ordered buck-
ets structure is created, we sample along the order fromi
= 1 to j. The construction procedure guarantees that when
we sample a variablexi from its bucket, all variables or-
dered beforexi are instantiated and there is only a single
un-instantiated variable in each function in the bucket ofxi .
So, the time-complexity to sample each bucket is bounded
by O(d) yielding a time-complexity ofO(N ∗ |X1| ∗ d) to
generate all samples. An example ordered buckets structure
for the join-graph-decomposition in Figure 2(b) is given in
Figure 4.

We now describe how to compute the weight of each
sample. According to Rao-Blackwellised Importance
Sampling theory [Geweke, 1989, Doucet et al., 2000], the
weight of each sampleXk

1 over variablesX1 is given by
wk = P′/Q′ such thatP′/Q′ = β∗P(Xk

1 |e)/Q(Xk
1 |e), where

β is a constant. We can determine the quantityP(Xk
1 ,e) us-

ing join-tree-clustering while we can computeQ(Xk
1 ,e) (up

to a normalizing constant) from the ordered buckets struc-



ture described above by multiplying individual probabili-

ties. Now sinceQ(e) = 1, we have
P(Xk

1 ,e)
Q(Xk

1 ,e)
= β∗ P(Xk

1 |e)
Q(Xk

1 |e)
, as

required.

An important advantage of using IJGP(i) in addition to
constraint-propagation is that it may yield good approxi-
mation to the true posterior thereby proving to be an ideal
candidate for proposal distribution. The integration of the
ideas expressed above into a formal algorithm called IJGP-
RB-sampling is given in Figure 5. The algorithm first runs
IJGP(i) fork iterations to generate an approximation to the
true posterior. Then, it partitions the variablesX into two
setsX1 andX2 such that the treewidth of the special join-
tree-decomposition ofX2 is bounded byw using a method
proposed in [Bidyuk and Dechter, 2004]. It then creates an
ordered bucket structure overX1 from the output of IJGP(i)
and performs Importance Sampling using the ordered buck-
ets structure as described above. We conclude that:

THEOREM 5.1 The complexity of IJGP-RB-Sampling(i,w)
is O([N ∗dw+1 ∗ |Γc|3 ∗ |∆|]+ [(|∆|+n)∗di ∗ |Γc|3]) where
∆ is the set of discrete variables,d is the maximum-domain
size,i is the adjusted-i-bound,w is the adjusted-w-cutset,
n is the number of nodes in the join-graph and|Γc| is the
maximum number of continuous variables in the clique of
the join-graph-decomposition.

6 EXPERIMENTAL EVALUATION

We tested the performance of IJGP(i), pure RB-
Sampling and IJGP-RB-Sampling(i,w) on randomly
generated HMNs. We used a parametric model
(N1,N2,K,C1,C2,P,T) where N1 is the number of
discrete variables,N2 is the number of Gaussian Variables,
K is the domain-size for each discrete variable,C1 is the
number of constraints allowed andT is the tightness or
the number of forbidden tuples in each constraint,C2 is
the number of conditional probability distributions (CPDs)
and P is the number of parents in each CPD. Parents in
each CPD are picked randomly and each CPD is filled
randomly. Note that each Gaussian CPDs was assigned a
mean and variance randomly chosen in the range(0,1).
Also no Gaussian variables have discrete children in our
random problems. The constraint portion is generated
according to Model B [Smith, 1994]. In Model B, for a
given N1 and K, we selectC1 constraints uniformly at
random from the availableN(N− 1)2 binary constraints
and then for each constraint we select exactlyT tuples
(called as constraint tightness) as no-goods (or forbidden)
from the availableK2 tuples.

We generated two classes of problems (a) a 50-variable
set with parameters(40,10,4,80,35,3,T) andT was var-
ied with values4, 6 and8 and (b) a 100-variable-set with
parameters(90,10,4,180,95,3,T) andT was varied with
values4, 6 and8. In each problem class, 10% of the vari-

ables were randomly selected as evidence variables. Each
algorithm was given the same amount of time for com-
puting approximate posterior Beliefs. For the 50-variable-
set, we let each algorithm run for 20s while for the 100-
variable-set we let each algorithm run for 100s. The choice
of these time-bounds was arbitrary. Also for each IJGP-
RB-Sampling(i,w) algorithm instance IJGP(i) is run for 10
iterations only.

For each network, we compute the exact solution using the
join-tree-clustering algorithm and compare the accuracy of
algorithms using: 1.Absolute error- the absolute value of
the difference between the approximate and the exact, aver-
aged over all values, all variables and all problems. 2.Rel-
ative error - the absolute value of the difference between
the approximate and the exact, divided by the exact, av-
eraged over all values, all variables and all problems. 3.
KL distance- Pe(xi) ∗ log(Pe(xi)/Pa(xi)) averaged over all
values, all variables and all problems wherePe andPa are
the exact and approximate probability values for variablexi

respectively.

For IJGP(i), we experimented withi-bounds of2, 4 and6
while for IJGP-RB-Sampling(i,w), we experimented with
i-bound andw of 2, 4 and6 each. We also experimented
with a w-cutset Importance Sampling algorithm (or pure
RB-Sampling) withw being set to0, 2, 4 and 6. Thus,
we have a total of16 algorithms in our experimental set-
up. We tabulate the results using a 4x4 matrix for each
combination of the problem-set, value of tightnessT and
accuracy-scheme (KL-distance, relative and approximate
error). The rows of the matrix are labeled from w=0 to
w=6 in increments of2 corresponding to thew values used
while the columns are labeled fromi = 0 to i = 6 corre-
sponding to thei-bound used. Note that the column-vector
i = 0 gives the results forw-cutset sampling while the row
vector w = 0 gives results for IJGP(i) (except fori = 0
when it gives results forw-cutset sampling). The rest of the
matrix contains results for IJGP-RB-Sampling for different
values ofi andw (see Tables 1 and 2).

6.1 EXPERIMENTS ON THE 50-VARIABLE-SET

Results on the 50-variable-set are given in Table 1. The
results are averaged over 100 instances each. Here, we
see that IJGP(i) has slightly better accuracy than IJGP-RB-
Sampling when the problem tightness is low(T = 4) (see
Figure 5, Table 1). However, as we increase the tightness
to (T = 8) the performance of IJGP(i) is worse than IJGP-
RB-Sampling (see Figure 6, Table 1). As expected the per-
formance ofw-cutset sampling improves asw is increased.
However IJGP-RB-sampling shows only a slight improve-
ment in accuracy with increase inw. The accuracy ofw-
cutset sampling is always worse than IJGP(i) and IJGP-
RB-Sampling and also it deteriorates more rapidly as the
tightness is increased (see Table 1).



Table 1: Table showing absolute error, relative error and K-L distance for 50-variable-set.
Relative Error Absolute Error K-L distance

T i=0 i=2 i=4 i=6 i=0 i=2 i=4 i=6 i=0 i=2 i=4 i=6
w=0 0.03123 0.00746 0.00727 0.00709 0.00772 0.00184 0.00177 0.00164 0.00062 0.00013 0.00012 0.00012
w=2 0.02124 0.00872 0.00823 0.00737 0.00503 0.00213 0.00198 0.00178 0.00042 0.00017 0.00016 0.00011

4 w=4 0.01782 0.00843 0.00757 0.00934 0.00439 0.00195 0.00173 0.00209 0.00032 0.00013 0.00014 0.00016
w=6 0.01892 0.00914 0.00803 0.00805 0.00414 0.00208 0.00189 0.00208 0.00037 0.00016 0.00015 0.00016

w=0 0.0569 0.01692 0.01224 0.01329 0.01393 0.004 0.00287 0.03023 0.00114 0.00031 0.00024 0.00024
w=2 0.05294 0.01234 0.01123 0.01142 0.01293 0.00301 0.00276 0.00275 0.00104 0.00023 0.00019 0.00022

6 w=4 0.04543 0.01182 0.01078 0.01234 0.01098 0.00218 0.00248 0.00301 0.000874 0.00021 0.00021 0.00023
w=6 0.04593 0.01221 0.01223 0.01287 0.01103 0.00301 0.00296 0.00309 0.00088 0.00023 0.00024 0.00025

w=0 0.10234 0.02393 0.01872 0.01908 0.02559 0.00598 0.00468 0.00477 0.0020 0.00044 0.00036 0.00036
w=2 0.09029 0.01721 0.01089 0.01056 0.02257 0.0043 0.00272 0.00264 0.00177 0.00034 0.00020 0.00021

8 w=4 0.09102 0.00927 0.01102 0.01012 0.02276 0.00232 0.00276 0.00253 0.0018 0.00016 0.0002 0.00016
w=6 0.07928 0.01023 0.01394 0.01234 0.01982 0.00256 0.00349 0.00309 0.0016 0.00016 0.00026 0.00022

Figure 6: Figure comparing relative error of IJGP and
IJGP-RB-Sampling (i,w) for T=4 for 50-variable set

Figure 7: Figure comparing relative error of IJGP and
IJGP-RB-Sampling (i,w) for T=8 for 50-variable set

6.2 EXPERIMENTS ON THE 100-VARIABLE-SET

Results on the 100-variable-set are given in Table 2. The
results are averaged over 100 instances each. Here, we
see that unlike the 50-variable-set, IJGP(i) has compara-
ble accuracy to IJGP-RB-Sampling when the tightness is
low (T = 4) (see Figure 7 and Table 2). However, as we
increase tightness(T = 8), the accuracy of IJGP(i) is con-
siderably worse than IJGP-RB-Sampling (see Figures 7, 8
and Table 2). Also RB-Sampling is significantly worse than
IJGP-RB-Sampling for various values ofw (see Table 2).

Figure 8: Figure comparing relative error of IJGP and
IJGP-RB-Sampling (i,w) for T=4 for 100-variable set

Figure 9: Figure comparing relative error of IJGP and
IJGP-RB-Sampling (i,w) for T=8 for 100-variable set

7 RELATED WORK AND SUMMARY

A Mixed Network framework for representing deter-
ministic and uncertain information was presented in
[Larkin and Dechter, 2003, Dechter and Mateescu, 2004].
These previous works also describe exact inference algo-
rithms for Mixed Networks with the restriction that all vari-
ables should be discrete. Our work goes beyond these pre-
vious works in that we describe approximate inference al-
gorithms for the Mixed Network framework and allow con-
tinuous Gaussian nodes.



Table 2: Table showing absolute error, relative error and K-L distance for 100-variable-set.
Relative Error Absolute Error K-L distance

T i=0 i=2 i=4 i=6 i=0 i=2 i=4 i=6 i=0 i=2 i=4 i=6
w=0 0.06676 0.01734 0.01692 0.01684 0.01487 0.00369 0.00320 0.00318 0.00128 0.00025 0.00024 0.00023
w=2 0.04220 0.01841 0.01829 0.01542 0.01117 0.00517 0.00414 0.00350 0.00094 0.00039 0.00037 0.00025

4 w=4 0.04055 0.01926 0.01697 0.01911 0.00937 0.00429 0.00393 0.00428 0.00071 0.00026 0.00032 0.00041
w=6 0.03756 0.01942 0.01765 0.02069 0.00916 0.00431 0.00455 0.00490 0.00083 0.00036 0.00036 0.00039

w=0 0.11526 0.03369 0.02629 0.02136 0.03103 0.00956 0.00609 0.06205 0.00254 0.00064 0.00053 0.00047
w=2 0.10788 0.02658 0.02291 0.02467 0.02913 0.00713 0.00600 0.00577 0.00220 0.00046 0.00039 0.00046

6 w=4 0.10970 0.02333 0.02468 0.02632 0.02431 0.00512 0.00571 0.00706 0.00203 0.00042 0.00043 0.00047
w=6 0.10043 0.02799 0.02848 0.02889 0.02192 0.00668 0.00621 0.00646 0.00204 0.00047 0.00054 0.00055

w=0 0.22601 0.04838 0.04366 0.04342 0.05453 0.01416 0.01023 0.01105 0.00477 0.00098 0.00081 0.00082
w=2 0.18253 0.03674 0.02384 0.02183 0.04509 0.01026 0.00574 0.00624 0.00386 0.00081 0.00046 0.00048

8 w=4 0.19833 0.01964 0.02253 0.02295 0.04555 0.00527 0.00645 0.00601 0.00355 0.00035 0.00039 0.00033
w=6 0.15385 0.02392 0.03256 0.02902 0.03890 0.00509 0.00762 0.00633 0.00311 0.00036 0.00061 0.00050

A class of approximate inference algorithms called IJGP(i)
described in [Dechter et al., 2002] handles only discrete
variables. In our work, we extend IJGP(i) to include Gaus-
sian variables and discrete constraints.

Importance Sampling is a commonly used algorithm for
sampling in Bayesian Networks [Geweke, 1989]. A main
step in Importance Sampling is choosing a proposal distri-
bution that is as close as possible to the target distribution.
We show how a bounded inference procedure like IJGP(i)
can be used to select a good proposal distribution.

The main algorithmic contribution of this paper is present-
ing a class of Rao-Blackwellised Importance Sampling al-
gorithms, IJGP-RB-Sampling for HMNs which integrates
a Generalized Belief Propagation component with a Rao-
Blackwellised Importance Sampling scheme for effective
sampling in presence of constraints.

Our experimental results are preliminary but very encour-
aging. Our results on randomly generated HMNs show that
IJGP-RB-Sampling is almost always superior to purew-
cutset sampling (RB-Sampling) which does not use IJGP
as a importance function. Our results also show that IJGP-
RB-Sampling has better accuracy than IJGP when the prob-
lem tightness is high or when the number of solutions to the
constraint portion of HMNs is low.
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