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Abstract erative Join Graph Propagation (IJGP) can be extended
to HMNSs in a straightforward way. However, extending
Rao-Blackwellised Importance Sampling algorithms (RB-
Sampling) to HMNSs using the straightforward way results
in poor performance. This is because in HMNs every sam-
ple that violates a constraint will receive zero weight and
will be rejected. To remedy this problem, we suggest a new
Importance Sampling algorithm called IJGP-RB-Sampling
which uses the output of IJGP as an importance function
and we view it as the main contribution of this paper.

In this paper, we considadybrid Mixed Net-
works (HMN)which are Hybrid Bayesian Net-
works that allow discrete deterministic informa-
tion to be modeled explicitly in the form of con-
straints. We present two approximate inference
algorithms for HMNs that integrate and adjust
well known algorithmic principles such as Gen-
eralized Belief Propagation, Rao-Blackwellised
Importance Sampling and Constraint Propaga- ~ We performed experiments on random HMNs to compare
tion to address the complexity of modeling and how IJGP, pure RB-Sampling and IJGP-RB-Sampling per-

reasoning in HMNs. We demonstrate the perfor- form relative to each other in terms of accuracy when given

mance of our approximate inference algorithms the same amount of time. Our empirical results suggest

on randomly generated HMNSs. that 1JGP-RB-Sampling is always better than pure RB-
Sampling and dominates IJGP as the constraint tightness
increases.

1 INTRODUCTION The rest of the paper is organized as follows. Section 2

. . . ._defines HMNs and presents some preliminaries. In the
In this paper, we present and evaluate approximate infer:

. o . two subsequent sections, we describe how to extend join
ence algorithms for Hybrid Mixed Networks which are Hy- tree clustering and Iterative Join Graph Propagation to

brid Bayesian Networks that contain discrete determlnlsth_”v”\ls We follow by describing 1JGP-RB-Sampling for

|t_nfotrrr;att)|on n t?e folrdm of l(_:ontgtralnfts. Our_workbls :no- performing effective Rao-Blackwellised Importance Sam-
Ivated by a real-world application ot reasoning abou Car'pling in HMNs. We then present empirical results on ran-

trayel activity .Of mdw@uals. This application was modeleq dom HMNSs and conclude with a discussion of related work
using Dynamic Bayesian Networks and requires expressin nd summary

discrete and continuous variables as well as deterministic
discrete constraints.

The two popular approximate inference algorithms used fo2 PRELIMINARIES AND DEFINITIONS
inference in Dynamic Bayesian Networks (DBN) are Rao-

Blackwellised Particle Filtering [Doucet et al., 2000] and p graphical model is defined by a collection of functions,
Expectation Propagation [Heskes and Zoeter, 2002]. Thesgyer a set of variables, conveying probabilistic or determin-

algorithms use Importance Sampling, exact inference angtic information, whose structure is captured by a graph.
Generalized Belief Propagation (GBP) on a Bayesian Net-

work, which is a basic structural component of a DBN. We bk viTioN 2.1 A graphical modelis a triplet (X, D, F)
seek to extend these algorithms to our application in whichhare 1.x — (X1, %0, ..., Xn} is @ finite set of varia’blés 2
the basic structural component is a Hybrid Mixed Networkp _ rp, Dn}’is a set of domains of values in WhiB'm

(HMN). is a domain ofX; and 3. F = {Fy,F,...,Fn} is a set of

We show how exact inference algorithms like join-treereal-valued functions. The scope of functidndenoted as
clustering and a parameterized GBP algorithm called Itscopefi) C X, is the set of arguments 6f.



DEFINITION 2.2 The primal graph of a graphical model Bayesian Network Constraint Network
is an undirected graph that has variables as its vertices
and an edge connects any two variables that appear in th
scope of the same function.

Two graphical models of interest in this paper are Hy-
brid Bayesian Networks and Constraint NetworksHg-
brid Bayesian Network (HBN) [Lauritzen, 1992] B =
(X,D,P) is defined over a directed acyclic gragh=
(X,E) and its functionsh = {P(x|pa)} where pg is
the set ofparentnodes ofx;. X is the set of variables
partitioned into discreteA and continuqusl’ va_riable_s, Figure 1: Example HMN consisting of a HBN and a Con-
i,e. X =TUA. The graph structur& is restricted in :

. ) . . straint Network
that continuous variables cannot have discrete variables
as their child nodes. The conditional distribution of con-
tinuous variables are given by a linear Gaussian modellabeling functions which associate with each vernexV
P(xi|l =i,Z=12) = N(a(i)+B(i) xzy(i)) x €T where two setsx(v) C X and(v) C F such that, (1) For each
Z and| are the set of continuous and discrete parents ofunction f; € F, there is exactly one vertexe V such
x; respectively andN(y, o) is a multi-variate normal dis- that f; € Y(v), and scopéf;) C x(v), (2) For each variable
tribution. The network represents a joint distribution overx; € X, the set of{v € V|x € x(v)} induces a connected
all its variables given by a product of all its CPDs. A subgraph ofG (called the running intersection property).
Constraint network [Dechter, 2003]% = (X,D,C), has
C = {C1,Cy,...,Cn} as its functions also called as con- The width of a graph-decomposition i = maxx(v)| —
straints. Each constraif; is a relationR; defined over a 1. A join-tree-decompositiois a graph-decomposition in
subset of the variable% C X and denotes the combination which the graph is a tree whijein-graph-decompositions
of values that can be assigned simultaneoushgolution ~ (JG(i)) are graph-decompositions in which the width is
is an assignment of values to all the variables such that nbounded by.
constraint is violated. The primary query is to decide if the

Constraint Network is consistent (whether it has a solutionfFX@mple 2.2 Figure 2 showing (&) primal graph, (b) join-
and if so find one or all solutions. graph-decomposition and (c) join-tree-decomposition of

the example HMN shown in Figure 1.

A Hybrid Mixed Network

Using the Mixed Network frame-

work [Dechter and Mateescu, 2004] for augmentingAnother relevant notion is that ef-cutset Given a graph-
Bayesian Networks with constraints, we can extend HBNscal model (X,D,F) , the w-cutsetis the set of variables
to include discrete constraints, yieldingybrid Mixed  X; C X whose removal from the graphical model yields a
Networks (HMNs)Formally, graphical model whose treewidth is boundednby

DEFINITION 2.3 (Hybrid Mixed Network) Givena HBN  This paper focuses on the problem of computing the poste-
B = (X,D,P) that expresses the joint probabili§s and  rior marginal distribution (or beliefs) at each variable given
given a Constraint NetworR = (A) DA,C) that expresses evidence |eP(x. |E) This problem is known to be NP-hard

a set of solutionp, a Hybrid Mixed Network (HMN) based and so we resort to approximations.

on B and R denoted byM (B, R) is created fromB and X

as follows. The discrete variablésand their domainsare 3 EXACT INFERENCE IN HMNs

shared and the relationships include the CPD®iand the

constraints inC. We assume that the Constraint Network |, this section, we extend a class of exact inference algo-

is always consistent and.so the HMN expresses the Conyihms hased on join-tree-clustering [Lauritzen, 1992] from
ditional probability PM(X):Pu (x) = Pg(xx € p) if X€ P {BNs to HMNS. This algorithm will serve as a basis for the
and0 otherwise. Generalized Belief Propagation scheme described in sec-

i i tion 4 which will be investigated empirically as a stand-
Example 2.1 Figure 1 shows a HBN and a Constraint Net- 45ne scheme and also as a component in our Importance

work yielding a HMN over variable§A,B,C,D,F,.G where Sampling scheme described in section 5.
D and G are continuous variables (drawn as squares) and
the rest are discrete (drawn as circles). The join-tree-clustering algorithm for HMNs can be de-

rived in a straightforward way by incorporating ideas from
DEFINITION 2.4 (Graph Decomposition) Given a graph-  [Lauritzen, 1992] and we describe it here for complete-
ical model (X,D,F), a graph decomposition is a triplet ness sake (see Figure 3). The exact inference algorithm
(GD,x,W) whereGD(V,E) is a graph andy and Y are  in [Lauritzen, 1992] works by first forming a join-tree-
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Figure 2: Graph decompositions of HMN in Figure 1.
Algorithm Join-tree-clustering-hmn to form a single functioiPC. Here, multiplication can be
e Input: A Hybrid Mixed NetworkMN = (X,D,P,C) and Evidence performed on the functions iR" andC’ separately using
. N N o ) the operators in [Lauritzen, 1992] and [Dechter, 2003] re-
e Output: A join-tree-decomposition containing the original functions and ivel inal babilistic f Pand
the messages. spe_ctlve y to compute a single probabi istic u_nct an
1 . . a single constraint relatio@. These two function® and
. Instantiate Evidence .. .
2. Create a special-join-tree-decomposifior- (GD(V, E), X, ). C can be multiplied by deleting all tuples ithat are not

3. Select a strong-roota using a method from Lay-  presentirC to form the required functioRC.
ritzen [Lauritzen, 1992].

4. Let[e,...,a] be a DFS-ordering of edges from the strong gt~ VWe comment on two major technical points for the algo-
. (EJHI:M Pass rithm given in Figure 3. Firstly, to be sound the join-tree-
- CallMessage-Passif, [ey..... &) clustering algorithm must satisfy the strong root property

6. CallM -Passirifl, . .
allMessage-Passing, 6. e1) as required by HBNs [Lauritzen, 1992]:

Procedure Message-Passing

e Input: A graph-decompositiofGD(V,E),X, ) for a HMN and an order DEFINITIO’_\‘_?"]' (Strong Root) Given a join_—tree-
ing of edged = [ey, .., &] wheree, € E. decomposition (GD(V,E),x,l), a noder € V is a
e Output: An graph-decomposition containing new messages and functions. strong—root iff for all nelghborlng nodex and d with ¢
closer tor thand, we have thasefc,d) CAord\cCT
wherel is the set of continuous variables ands the set

1. Compute messagesiLete; = (u,v) of discrete variables.
Computem(u, V), the message that vertexsends to vertey,

e for j=1tokdo

m(u,V):ﬂ (® e 2muy ) A sufficient condition to ensure that there is at least one

wherecl(U) = (1)U {m(vio U)|(v,U) € E} strong root in a join-tree-decomposition is to use an order-
2. Send message(v;,v) toV. ing for triangulation in which all continuous variables are
ordered before discrete variables. We call such join-tree-
decompositions aspecial-join-tree-decompositionsee

Figure 3: Join-tree-clustering for HMNs Figure 2(c)).

Finally, because Gaussian nodes can be processed in poly-
decomposition and then passing messages between indloMial time, the complexity of processing each clique is
vidual cliques of a join-tree-decomposition. A messageexponential only in the number of discrete variables in the
from nodeN; to N;j is constructed by first multiplying all clique. We capture this property using the definition of

messages and functions i excluding the message from 2diusted-width.
N; and then marginalizing the product over the separap,
tor betweenN; andN;. The operators of marginalization
| and multiplication® required for message-passing on
a join-tree-decomposition of a HMN can be constructe
in a straightforward way by combining the operators in
[Lauritzen, 1992] and [Dechter, 2003] that work on HBN's |t s straight forward to show that [Lauritzen, 1992]:

and constraint relations respectively. We will now briefly

comment on how the multiplication operator can be de-THEOREM 3.1 Given a HMNMN(X, D, P,C) and evidence
rived. Let us assume we want to multiply a collection of e, algorithm Join-tree-clustering-hmn is sound. For dis-
probabilistic function$’ and a set of constraint relatioBs  crete variables, the marginal at each clique computed by
(which consist of discrete tuples allowed by the constraintmultiplying the messages and functions in each clique is

EFINITION 3.2 Given a  join-graph-decomposition
(GD, X, W), theadjusted-width of a join-graph decompo-
sition isw = max|x(v) NA| — 1. The adjusted-treewidth of
join-tree-decomposition is equal to its adjusted-width.



exact while for continuous variables the marginal is exactJoin Graph Propagation to generate an effective proposal
in the sense that it has the correct first and second momentiistribution.

as the exact marginal. Sampling methods are used for approximate inference in

THEOREM3.2 The time-complexity ~of  Join-tree- Bayesian Networks and are useful in cases when the dis-
clustering-hmn isO(|A| = |[¢[3 = d¥+1)).  Here I¢ is tribution is hard to compute analytically using exact in-

the maximum number of continuous variables in the cliqud€€nce. The virtue of sampling schemes is that they are
of a join-tree-decompositiord is the maximum domain guaranteed to yield the correct posterior distribution when
size of the discrete variables) is the set of discrete €Y converge and they use only linear space. Animportant

variables in the HMN anavs is the adjusted-treewidth of C€lass of sampling algorithms is Importance Sampling for
the special-join-tree-decomposition used. Bayesian Networks. The idea here is that since we cannot

sample from the true posteri®X|e) (while it is NP-hard
to compute), we will sample from an approximatiQgX)
4 ITERATIVE JOIN GRAPH such that the ratiov = B P(X = x|e) /Q(X = x)! is known
PROPAGATION up to a normalizing constaft We can then compute the
required posterior marginal &x = x|e) = 3 ; fj(x) » wj
In this section, we extend an approximate inference alwhere fj(x) is the sample that agrees with= x and wj;
gorithm called Iterative Join Graph Propagation (IJGP)are the normalized importance weights compute@as:
to HMNs. IJGP(i) [Dechter et al., 2002] is parameter-w;/ywg. Ideally, the proposal distribution should have
ized Generalized Belief Propagation algorithm which op-the following properties: (1) It is easy to sample from (2) It
erates on a join-graph-decomposition having less thian allows easy evaluation of the val@X = x) for each sam-
1 variables in each clique. The complexity of IJGP(i) ple so that the weights can be computed in a cost-effective
is bounded exponentially by, also called the-bound.  manner and (3) IP(X) # 0thenQ(X) # 0. The last prop-
This algorithm was defined for discrete Bayesian Networkserty ensures that Importance Sampling converges to the
in [Dechter et al., 2002]. true posterior in limit of convergence [Geweke, 1989].

[JGP(i) can be extended to HMNs in a straight-forwardit is well known that any sampling scheme over multi-
way by iteratively applying the message-passing procedurdimensional space can be assisted by Rao-Blackwellised
given in Figure 3 to a join-graph-decomposition until a sampling, namely by sampling over a subspace. We
maximum number of iterations is performed or until the now describew-cutset sampling which is a special ver-
algorithm converges. sion of Rao-Blackwellised (RB) samplingv-cutset sam-
_pling [Bidyuk and Dechter, 2003] is a method that com-
bines exact inference and sampling and provides a system-
atic scheme for sampling from a subset of variables. The
idea is that given an assignment to a set of variables it might
be possible to compute the remaining distribution analyti-

THEOREM4.1 The complexity of IJGP(i) when applied to cally. Morg forma!ly, inw-cutset sampling we partition the
HMN is O((|A| + n) di ||—C‘3) where|A| is the number set of variablesX into two subsetX = X; U Xy such that

of discrete variablesd is the maximum-domain size of the the treewidth of the graphical model wh& is removed
discrete variablesj is the adjusted-bound,n is the num- IS bounded bywv. Eachw-cutset sample consists of an as-

ber of nodes in a join-graph anf¢| is the maximum num-  Signment of values t& = x; and a belief stat®(Xa|xq).
ber of continuous variables in any clique of the join-tree- Tne variables in the seé¢ are sampled and the remaining

An important technical difference between the exten
sion of IJGP(i) to HMNs and the original 1JGP(i) algo-
rithm [Dechter et al., 2002] is thdtstands for adjusted-

width rather than width.

decomposition used. Xz variables are solved exactly using exact algorithms like
join-tree-clustering.
5 RAO-BLACKWELLISED We can straightforwardly adapt-cutset Importance Sam-
IMPORTANCE SAMPLING pling to Hybrid Bayesian Networks (HBNs). Since exact

inference is polynomial if all nodes are Gaussiar;utset

In this section, we propose an effective Importance SamSaMPling in HBNs can be done by sampling only a sub-
pling for HMNs. We will first review Importance Sam- set of the discrete variables [Lerner, 2002]. Extending this

pling algorithms for computing posterior distribution and 'd€2 t0 HMNSs, suggests that we sample the discrete vari-

then revieww-cutset sampling which is a special version of ables using a suitable proposal distribution and discard all

the Rao-Blackwellisation concept. Subsequently, we dis;samples that violate one or more constraints. This method

cuss how an Importance Sampling algorithm would runCan D€ inefficient. For example, if we use the prior as
into problems when hard constraints are present. We enﬁ1e proposal distribution (as in Likelihood weighting) and
the section by presenting an algorithm called 1IJGP-RB-

Sampling that remedies these problems by using Iterative 1This is usually called Biased Importance Sampling



Ordered Buckets structure (Ordering: [AB C F]) Algorithm 1JGP-RB-Sampling

e Input: A Hybrid Mixed NetworkMN(X,D,P,C) and Evidence. Integeri, k, w

A: P(A) andN.
e Output: Estimate ofP(X|e).
B: P(B|A) m(1,2){(AB) m(2,1)(AB) #(A,B)
e Perform lterative Join-graph propagation on MN withound=i and number of
iterations%k. Let us call its outpufl.
c: m(2,4)(BC) m(4,2(BC) m(3,4{BC) m(4,3)(BC) P(C|A) #(A,C) e Partition the Variables of HMN int&; andX; such that the adjusted-treewidth [of
#B.,C) a special- join-tree-decomposition X$ is bounded bywv.
e Create a bucket-tre®T (V, ) from M such thaV contains only variables iX; .
F: m(3,6)(CF) m(5,3)(CF) #(C,F) P(F|B,C)
e Fori=1toNdo
. . .. 1. s = Generate a sample froBIT along the orded of BT for the set of
Figure 4: An ordered Buckets structure for the join-graph- variablesxy.
decomposition in Figure 2. m(x y) is the message sent by 2. Use join-tree-clustering to compute the distributionXshby setting evi-
! dence agUX; =s5. Lets call itr;.
node x to node y. 3. Reject the sample if is not a solution.

4. Compute the importance weightsof 5.

e Normalize the importance weightg.

the prior is such that solutions to the constraint portion are . .
highly unlikely, a large number of samples will be rejected| ~ ® Outputthe samples, fil andthe nomalized weights
(becausd(X' = 0) for a sampleX' and so weight would

be 0). Figure 5: IJGP-RB-Sampling for Hybrid Mixed Networks

On the other hand, if we want to make the sample rejec-

tion rate zero we would have to use a proposal distribu-

tion Q such that all samples fror® are solutions of the whereX; are the sampled variablehl is the number of
constraint portion. One way to find this proposal distribu-samplesj is the i-bound used and is the maximum do-
tion is to make the Constraint Network backtrack-free (per-main size.

haps using adaptive-consistency [Dechter, 2003]) along Al stead, we use a simplified method in which 1JGP(i) is ap-

ordering of variables and then sample along a reverse Ol lied iust once vielding a time-complexit @(exi(i) +
dering. However, adaptive-consistency can be costly un? J y 9 pexity ane

. . L N« |X1| +d) to generate all samples. The simplified method
less the treewidth of the constraint portion is small. Thususes a special data-structure of ordered buckets. Given
on one hand, zero-rejection rate implies using a costly in- P i '
ference procedure and on the other hand, sampling from a collection of functions and messages as the output of

proposal distribution that ignores the constraints may resul@G.P(') and an orderingt= (xi,...,Xj) of the discrete
in a high rejection rate. variables to be sampled, we construct the ordered buck-

ets structure as follows. We associate a bucket with each
We propose to exploit the middle ground between thevariablex; in Ttand consider only those functions and mes-
two extremes by combining the Constraint Network sagesF; whose scope is included fx;,...,x;}. We then
and the Bayesian Network into a single approximatestart processing fron=j to 1 putting all functions inFy
distribution Q using 1JGP(i). By using 1JGP(i) we that mentiorx in the bucket of;. Once the ordered buck-
are likely to reduce the rejection-rate because it ap-<ets structure is created, we sample along the order from
plies constraint-propagation in the form of relational = 1to j. The construction procedure guarantees that when
i-consistency [Dechter and Mateescu, 2003] , namelywe sample a variablg from its bucket, all variables or-

it removes many inconsistent tuples [Dechter, 2003].dered befores are instantiated and there is only a single
Note that the output of IJGP(i) can be used toun-instantiated variable in each function in the buckeg of
generate a proposal distribution because as showBo, the time-complexity to sample each bucket is bounded
in [Dechter and Mateescu, 200B] X|e) > 0 implies that by O(d) yielding a time-complexity oO(N x |X1| *d) to
Q(X|e) > 0 whereQ(X|e) is the distribution of IJGP(i). generate all samples. An example ordered buckets structure

We now describe a method to generate samples from th];_%g;z fm-graph-decomposmon in Figure 2(b) is given in

output of IJGP(i). Here, given an orderimg= (X1, ...,X;j)
of the discrete variables to be sampled, we first compute aive now describe how to compute the weight of each
approximate marginal denoted I6)(x;) from the output sample. According to Rao-Blackwellised Importance
of IJGR(i) and then samplg; from Q(x1). Then, we set Sampling theory [Geweke, 1989, Doucet et al., 2000], the
the sampled valug; = a; as evidence, run IJGP(i), com- weight of each sample(f over variablesX; is given by
pute the marginaQ(x|x; = &) and samplec; from this  w, = P’/Q such thaP’/Q = B P(X¥|e)/Q(X{|e), where
marginal. The above process is repeated until all variable is a constant. We can determine the quarRit¥¥, e) us-
are sampled. The method is inefficient however, requiring join-tree-clustering while we can compu@éx;, e) (up
ing O(|X1| xexp(i) * N x d) time for generating all samples to a normalizing constant) from the ordered buckets struc-




ture described above by multiplying individual probabili- ables were randomly selected as evidence variables. Each
P(X{le) as algorithm was given the same amount of time for com-
QAXfle)’ puting approximate posterior Beliefs. For the 50-variable-
set, we let each algorithm run for 20s while for the 100-
An important advantage of using 1JGP(i) in addition to variable-set we let each algorithm run for 100s. The choice
constraint-propagation is that it may yield good approxi-of these time-bounds was arbitrary. Also for each 1JGP-
mation to the true posterior thereby proving to be an ideaRB-Sampling(i,w) algorithm instance 1JGP(i) is run for 10
candidate for proposal distribution. The integration of theiterations only.
ideas expressed above into a formal algorithm called IJGPl—:
RB-sampling is given in Figure 5. The algorithm first runs
IJGP(i) fork iterations to generate an approximation to the
true posterior. Then, it partitions the variabbésnto two
setsX; and X, such that the treewidth of the special join-
tree-decomposition oX; is bounded by using a method
proposed in [Bidyuk and Dechter, 2004]. It then creates a
ordered bucket structure ovf from the output of IJGP(i)
and performs Importance Sampling using the ordered buc
ets structure as described above. We conclude that:

k
ties. Now sinceQ(e) = 1, we have% =B
19
required.

or each network, we compute the exact solution using the
join-tree-clustering algorithm and compare the accuracy of
algorithms using: 1Absolute error- the absolute value of
the difference between the approximate and the exact, aver-
aged over all values, all variables and all problem$Ré&l-
ative error - the absolute value of the difference between
The approximate and the exact, divided by the exact, av-
eraged over all values, all variables and all problems. 3.
KL distance- Po(x;) * log(Pe(X ) /Pa(xi)) averaged over all
values, all variables and all problems wh&eandP; are
THEOREM5.1 The complexity of IJGP-RB-Sampling(i,w) the exa(_:t and approximate probability values for variaple

is O([N * d"+1 T3 |A] 4 [(JA] 4 n) xd' % |T¢[3]) where respectively.

Ais the set of discrete variabled js the maximum-domain For IJGP(i), we experimented wiikbounds of2, 4 and6
size,i is the adjusted-bound,w is the adjustedw-cutset,  while for IJGP-RB-Samplingi,w), we experimented with

nis the number of nodes in the join-graph ajfid| is the  i-bound andw of 2, 4 and6 each. We also experimented
maximum number of continuous variables in the clique ofwith a w-cutset Importance Sampling algorithm (or pure
the join-graph-decomposition. RB-Sampling) withw being set ta0, 2, 4 and6. Thus,

we have a total o6 algorithms in our experimental set-
6 EXPERIMENTAL EVALUATION up. We tabulate the results using a 4x4 matrix for each

combination of the problem-set, value of tightndssnd
pure RB_accuracy-scheme (KL-distance, relative and approximate

Sampling and [JGP-RB-Sampling(i,w) on randomly error). The rows of the matrix are labeled from w=0 to
generated HMNs We used a ’parametric modeIW=6 in increments o2 corresponding to the values used
(N1,Np, K,C1,Co P'.I') where N; is the number of while the columns are labeled from= 0 to i = 6 corre-

discrete variabled\, is the number of Gaussian Variables, SPOnding to thé-bound used. Note that the column-vector
K is the domain-size for each discrete varialile,is the | = O 9ives the results fow-cutset sampling while the row
number of constraints allowed arkl is the tightness or VECtorw = 0 gives results for IJG®) (except fori = 0
the number of forbidden tuples in each constra@y,is when |tg|ve§ results fav-cutset sampling). The rest_of the
the number of conditional probability distributions (CPDs) matrix contains results for IJGP-RB-Sampling for different
and P is the number of parents in each CPD. Parents i

pyalues ofi andw (see Tables 1 and 2).
each CPD are picked randomly and each CPD is filled
randomly. Note that each Gaussian CPDs was assignedGall EXPERIMENTS ON THE 50-VARIABLE-SET
mean and variance randomly chosen in the raf@é). '
Also no Gaussian variables have discrete children in oup,

. o esults on the 50-variable-set are given in Table 1. The
random problems. - The constraint portion is generateorlesults are averaged over 100 instances each. Here, we
according to Model B [Smith, 1994]. In Model B, for a 9 i !

) . . see that IJGP(i) has slightly better accuracy than IJGP-RB-
given N; and K, we selectC; constraints uniformly at - ; .
. 5 g Sampling when the problem tightness is I6W= 4) (see
random from the availabl®(N — 1)< binary constraints . . )
. Figure 5, Table 1). However, as we increase the tightness
and then for each constraint we select exadtlyuples

o ) . o (T = 8) the performance of IJGP(i) is worse than IJGP-
]Sf;rlrl]et?]:il\gﬁ;tﬁgttﬂgggess) as no-goods (or forbidde B-Sampling (see Figure 6, Table 1). As expected the per-

formance ofw-cutset sampling improves &sis increased.
We generated two classes of problems (a) a 50-variablelowever 1JGP-RB-sampling shows only a slight improve-
set with parameter&40,10,4,80,35,3,T) andT was var- ment in accuracy with increase i The accuracy of-

ied with values4, 6 and8 and (b) a 100-variable-set with cutset sampling is always worse than 1JGP(i) and IJGP-
parameter$90,10,4,180,95,3,T) andT was varied with RB-Sampling and also it deteriorates more rapidly as the
values4, 6 and8. In each problem class, 10% of the vari- tightness is increased (see Table 1).

We tested the performance of [JGP(i),



Table 1: Table showing absolute error, relative error and K-L distance for 50-variable-set.

Relative Error Absolute Error K-L distance
T i=0 i=2 i=4 i=6 i=0 i=2 i=4 i=6 i=0 i=2 i=4 i=6
w=0 0.03123 | 0.00746 | 0.00727 | 0.00709 | 0.00772 | 0.00184 | 0.00177 | 0.00164 0.00062 0.00013 | 0.00012 | 0.00012
w=2 0.02124 | 0.00872 | 0.00823 | 0.00737 | 0.00503 | 0.00213 | 0.00198 | 0.00178 0.00042 0.00017 | 0.00016 | 0.00011
4 w=4 0.01782 | 0.00843 | 0.00757 | 0.00934 | 0.00439 | 0.00195 | 0.00173 | 0.00209 0.00032 0.00013 | 0.00014 | 0.00016
w=6 0.01892 | 0.00914 | 0.00803 | 0.00805 | 0.00414 | 0.00208 | 0.00189 | 0.00208 0.00037 0.00016 | 0.00015 | 0.00016
w=0 0.0569 0.01692 | 0.01224 | 0.01329 | 0.01393 0.004 0.00287 | 0.03023 0.00114 0.00031 | 0.00024 | 0.00024
w=2 0.05294 | 0.01234 | 0.01123 | 0.01142 | 0.01293 | 0.00301 | 0.00276 | 0.00275 0.00104 0.00023 | 0.00019 | 0.00022
6 w=4 0.04543 | 0.01182 | 0.01078 | 0.01234 | 0.01098 | 0.00218 | 0.00248 | 0.00301 | 0.000874 | 0.00021 | 0.00021 | 0.00023
w=6 0.04593 | 0.01221 | 0.01223 | 0.01287 | 0.01103 | 0.00301 | 0.00296 | 0.00309 0.00088 0.00023 | 0.00024 | 0.00025
w=0 0.10234 | 0.02393 | 0.01872 | 0.01908 | 0.02559 | 0.00598 | 0.00468 | 0.00477 0.0020 0.00044 | 0.00036 | 0.00036
w=2 0.09029 | 0.01721 | 0.01089 | 0.01056 | 0.02257 0.0043 0.00272 | 0.00264 0.00177 0.00034 | 0.00020 | 0.00021
8 w=4 0.09102 | 0.00927 | 0.01102 | 0.01012 | 0.02276 | 0.00232 | 0.00276 | 0.00253 0.0018 0.00016 0.0002 0.00016
w=6_| 0.07928 | 0.01023 | 0.01394 | 0.01234 | 0.01982 | 0.00256 | 0.00349 | 0.00309 | 0.0016 | 0.00016 | 0.00026 | 0.00022
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Figure 6: Figure comparing relative error of IJGP andFigure 8: Figure comparing relative error of 1IJGP and
IJGP-RB-Sampling (i,w) for T=4 for 50-variable set IJGP-RB-Sampling (i,w) for T=4 for 100-variable set

IJGP versus IJGP-RB-Sampling for t=8 IJGP versus ILIGP-RB-Sampling for t=8
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Figure 7: Figure comparing relative error of IJGP andFigure 9: Figure comparing relative error of IJGP and
IJGP-RB-Sampling (i,w) for T=8 for 50-variable set IJGP-RB-Sampling (i,w) for T=8 for 100-variable set

6.2 EXPERIMENTS ON THE 100-VARIABLE-SET 7 RELATED WORK AND SUMMARY

Results on the 100-variable-set are given in Table 2. Thé\ Mixed Network framework for representing deter-
results are averaged over 100 instances each. Here, weinistic and uncertain information was presented in
see that unlike the 50-variable-set, 1JGP(i) has compargLarkin and Dechter, 2003, Dechter and Mateescu, 2004].
ble accuracy to IJGP-RB-Sampling when the tightness ighese previous works also describe exact inference algo-
low (T = 4) (see Figure 7 and Table 2). However, as werithms for Mixed Networks with the restriction that all vari-
increase tightnesdl’ = 8), the accuracy of IJGP(i) is con- ables should be discrete. Our work goes beyond these pre-
siderably worse than IJGP-RB-Sampling (see Figures 7, 8ious works in that we describe approximate inference al-
and Table 2). Also RB-Sampling is significantly worse thangorithms for the Mixed Network framework and allow con-
IJGP-RB-Sampling for various valueswf(see Table 2). tinuous Gaussian nodes.



Table 2: Table showing absolute error, relative error and K-L distance for 100-variable-set.

Relative Error Absolute Error K-L distance

T i=0 i=2 i=4 i=6 i=0 i=2 i=4 i=6 i=0 i=2 i=4 i=6
w=0 | 0.06676 | 0.01734 | 0.01692 | 0.01684 | 0.01487 | 0.00369 | 0.00320 | 0.00318 | 0.00128 | 0.00025 | 0.00024 | 0.00023
w=2 | 0.04220 | 0.01841 | 0.01829 | 0.01542 | 0.01117 | 0.00517 | 0.00414 | 0.00350 | 0.00094 | 0.00039 | 0.00037 | 0.00025
4 | w=4 | 0.04055 | 0.01926 [ 0.01697 | 0.01911 [ 0.00937 | 0.00429 | 0.00393 | 0.00428 | 0.00071 [ 0.00026 | 0.00032 [ 0.00041
w=6 0.03756 | 0.01942 | 0.01765 | 0.02069 | 0.00916 | 0.00431 | 0.00455 [ 0.00490 | 0.00083 | 0.00036 | 0.00036 | 0.00039

w=0 0.11526 | 0.03369 | 0.02629 | 0.02136 | 0.03103 | 0.00956 | 0.00609 | 0.06205 | 0.00254 | 0.00064 | 0.00053 | 0.00047
w=2 0.10788 | 0.02658 | 0.02291 | 0.02467 | 0.02913 | 0.00713 | 0.00600 | 0.00577 | 0.00220 | 0.00046 | 0.00039 | 0.00046
6 w=4 0.10970 | 0.02333 | 0.02468 | 0.02632 | 0.02431 | 0.00512 | 0.00571 | 0.00706 | 0.00203 | 0.00042 | 0.00043 | 0.00047
w=6 0.10043 | 0.02799 | 0.02848 | 0.02889 | 0.02192 | 0.00668 | 0.00621 | 0.00646 | 0.00204 | 0.00047 | 0.00054 | 0.00055

w=0 0.22601 | 0.04838 | 0.04366 | 0.04342 | 0.05453 | 0.01416 | 0.01023 | 0.01105 | 0.00477 | 0.00098 | 0.00081 | 0.00082
w=2 0.18253 | 0.03674 | 0.02384 | 0.02183 | 0.04509 | 0.01026 | 0.00574 | 0.00624 | 0.00386 | 0.00081 | 0.00046 | 0.00048
8 w=4 0.19833 | 0.01964 | 0.02253 | 0.02295 | 0.04555 | 0.00527 | 0.00645 | 0.00601 | 0.00355 | 0.00035 | 0.00039 | 0.00033
w=6 0.15385 | 0.02392 | 0.03256 | 0.02902 | 0.03890 | 0.00509 | 0.00762 | 0.00633 | 0.00311 | 0.00036 | 0.00061 | 0.00050

A class of approximate inference algorithms called 1IJGP(i)[Dechter, 2003]Dechter, R. (2003).Constraint Process-
described in [Dechter et al., 2002] handles only discrete ing. Morgan Kaufmann.

variables. In our work, we extend 1JGP(i) to include Gaus_[Dechter etal., 2002Dechter, R., Kask, K. and Ma-

sian variables and discrete constraints. teescu, R. (2002). lterative join graph propagation. In
Importance Sampling is a commonly used algorithm for  UAI '02, pages 128—-136. Morgan Kaufmann.

sampling in Bayesian Networks [Geweke, 1989]. A main
: o ; .. [Dechter and Mateescu, 2008}echter, R. and Mateescu,
step in Importance Sampling is choosing a proposal distri R. (2003). A simple insight into iterative belief propa-

bution that is as close as possible to the target distribution. S

We show how a bounded inference procedure like IJGP(i) gation’s succesdJAI-2003
can be used to select a good proposal distribution. [Dechter and Mateescu, 2004echter, R. and Mateescu,
R. (2004). Mixtures of deterministic-probabilistic net-

The main algorithmic contribution of this paper is present- . )
'n algorttm out 'S Paper IS pres works and their and/or search space.Phmoceedings of

ing a class of Rao-Blackwellised Importance Sampling al- L L
gorithms, IJGP-RB-Sampling for HMNs which integrates }hf ﬁ.Oth AnnlLJJill%oArnference on Uncertainty in Artificial
a Generalized Belief Propagation component with a Rao- ntelligence (UAI-04)

Blackwellised Importance Sampling scheme for effective[Doucet et al., 2000]Doucet, A., de Freitas, N., Murphy,

sampling in presence of constraints. K. P., and Russell, S. J. (2000). Rao-blackwellised par-
Our experimental results are preliminary but very encour- gglgoﬂltermg for dynamic bayesian networks. WAI-

aging. Our results on randomly generated HMNs show that
IJGP-RB-Sampling is almost always superior to pure  [Geweke, 1989]Geweke, J. (1989). Bayesian inference
cutset sampling (RB-Sampling) which does not use IJGP in econometric models using monte carlo integration.
as a importance function. Our results also show that IJGP- Econometrica57(6):1317-39.

RB-Sampling has better accuracy than IJGP when the prob-

lem tightness is high or when the number of solutions to the {€Skes and Zoeter, 2002jeskes, T. and Zoeter, O.
constraint portion of HMNs is low. (2002). Expectation propagation for approximate infer-

ence in dynamic bayesian networks.UAl-2002
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