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V ideo surveillance activity has dramatically increased over the past three years.

Earlier work dealt mostly with single stationary cameras, but the recent trend is

toward active multicamera systems. Such systems offer several advantages over single

camera systems—multiple overlapping views for obtaining 3D information and handling

occlusions, multiple nonoverlapping cameras for
covering wide areas, and active pan-tilt-zoom (PTZ)
cameras for observing object details. 

Research interests have thus migrated from simple
static image-based analysis to video-based dynamic
monitoring and analysis.1,2 Researchers have made
strides addressing illumination, background, color,
and perspective invariance issues.1,2 They can also bet-
ter track and analyze deformable shapes associated
with moving human bodies and moving cameras3 and
have improved activity analysis and control of multi-
camera systems.2,3 Our own research deals with a dis-
tributed array of cameras that offer wide area moni-
toring and scene analysis at multiple levels of
abstraction. However, installing multiple sensors intro-
duces new system design issues and challenges. We
need handoff schemes for passing tracked objects
between sensors and clusters, methods for determin-
ing the best view given the scene’s context, and sen-
sor-fusion algorithms to best exploit a given sensor or
sensor modality’s strengths. 

To address these issues, we’ve developed a multi-
camera video surveillance approach, called Distrib-
uted Interactive Video Array. The DIVA framework
provides multiple levels of semantically meaningful
information (“situational” awareness) to match the
needs of multiple remote observers. A large-scale,
cluster of video streams lets us observe a remote
scene, and using automatic focus-of-attention and

event-driven servoing (motorized control of camera
PTZ) captures desired events at appropriate resolu-
tions and perspectives. We’ve designed DIVA-based
systems that can track and identify vehicles and peo-
ple, monitor perimeters and bridges, and analyze
activities. Deployment of select DIVA modules at
Super Bowl XXXVII and on roadways and a bridge
in San Diego has proven the value of computer vision
techniques in homeland security (see the “Computer
Vision’s Role in US Homeland Security” sidebar).

Framework and functionalities 
Single-perspective-camera-based systems limit the

quantity and quality of data available from the view-
able environment. Furthermore, systems that use a
single dedicated processor to analyze and record data
can’t distribute the processing, select from an array
of available sensors, or access real-time or archived
data at multiple remote sites.

DIVA, on the other hand, supports distributed
video networks that distribute sensors over a wide
area for complete coverage (see figure 1). It also
offers televiewing capabilities—all sources of infor-
mation are available through a TCP/IP connection
to the distributed computers. In addition, DIVA
includes active camera systems that exploit redun-
dant sensing by having one or more central monitors
select the camera with the best view of a given area
(focus of attention) in response to an event.

A new video

surveillance approach

employing a large-

scale cluster of video

sensors demonstrates

the promise of

multicamera arrays

for homeland security.
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Figure 1. Active video capture and analysis for multilevel situational awareness using Distributed Interactive Video Array (DIVA).

Computer vision is a key AI research area. From the 1970s to
the 1990s, computer vision proved its practical value in a wide
range of application domains including medical diagnostics,
semiconductor manufacturing, automatic target recognition
and smart weapons, remote sensing, and various environmen-
tal applications. 

It thus wasn’t surprising that the first set of post-9/11
requests for proposal by the Combating Terrorism Tech-
nology Office of the Technical Support Working Group, 
managed by the US Secretary of Defense, included several
computer-vision-related research topics. The RFPs solicited
projects that planned to develop rapid prototypes in less
than two years.1 They also urgently sought new concepts 
and systems for 

• remote monitoring of real- or near-real-time movements of
forces and resources—in particular, networked autonomous
systems that provide a fused picture of the environment
and movements; 

• locating faces in video images containing one or more human
faces, with special interest in “natural environments” with
unconstrained lighting and pose angles; 

• identifying faces in video images under unconstrained lighting
and pose conditions with potential for real-time applications;

• systems for tracking a single person through multiple sequen-
tial video images or through multiple cameras in uncontrolled
lighting environments;

• terrorist behavior and action prediction technology to assist
the analysis and identification of patterns, trends, and mod-
els of behavior of terrorist groups and individuals, including
visualization and display tools for understanding the relation-
ships between people, events, and behavior patterns; and

• physical security support to protect personnel, equipment,
and facilities against terrorist activities. 

The US Department of Homeland Security also recognized the
importance of the computer vision field, with one of its first set
of RFPs issued in April 2004 titled “Automated Scene Under-
standing.” Many other US government agencies, including the
National Research Council, encouraged realignment of research
agendas and programs to support homeland security appli-
cations.2,3 For example, the National Science Foundation spon-
sored a number of workshops to identify and encourage research
in cyberinfrastructure and sensor network fields.4 Computer
vision was once again identified as an important topic in an NSF
report that highlighted the need for developing “ubiquitous
vision” with networked and cooperative arrays of cameras (see
www.calit2.net/news/2003/3-17_NSF.html). 
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Another feature is multiple object track-
ing and handoff (reidentification) using sev-
eral cameras. DIVA creates a model of the
environment with which it can interact to
detect, segment, and track objects in a scene
between viewpoints. It can then perform 3D
localization to locate the objects in 3D world
coordinates.

Finally, DIVA offers multisensor integration,
exploiting information from rectilinear CCD
cameras, omnidirectional cameras, and infrared
cameras in an integrated and effective way. 

To realize the fusion for integrated situa-
tional awareness, we’ve also developed the
Networked Sensor Tapestry framework for
multilevel semantic integration.4 The NeST
server takes inputs from visual analysis mod-
ules for both indoor and outdoor scenarios
through the network and archives the data in
a database along with appropriate time-
stamps. NeST assures the tracked person’s
privacy using a set of programmable plug-in
privacy filters operating on incoming sensor
data. The filters either prevent access to the
data or remove any personally identifiable
information. We specify the privacy filters
using a privacy grammar that can connect

multiple low-level data filters and features to
create arbitrary data-dependent privacy defi-
nitions.4 The Context Visualization Environ-
ment tool provides users with a 3D virtual
reality interface for ongoing activities. CoVE
also lets users replay previous records of sur-
veillance spaces for investigative purposes. 

Observing roads, bridges, and
perimeters

Homeland security must protect trans-
portation infrastructures5 from terrorist
attacks and natural disasters as well as from
continuous degradation caused by heavy traf-
fic and elements of nature. Bridges are criti-
cal in such infrastructures, and monitoring
them requires both seismic sensors and cam-
eras. Multimodal sensory systems charac-
terize important patterns associated with
structural movements and dynamic loads
from vehicular traffic. For security purposes,
it would be useful if such systems could also
identify and track the same vehicle in differ-
ent cameras spread over a wide area.

Multicamera vehicle tracking
To extract moving vehicles from a video

sequence, we need to be able to identify
where changes occur in a video scene. We
can accomplish this using background sub-
traction, a commonly used and computa-
tionally inexpensive method that generates a
background image using several frames of
video.6 We can then subtract that background
image from the current video image to sep-
arate moving foreground objects. 

The vehicle-tracking system processes the
resulting image to extract blobs and then iden-
tifies vehicles based on blobs that satisfy cer-
tain size, area, and density constraints. To
robustly track vehicles over multiple frames,
the system associates existing tracks with
appropriate blobs. It combines measured blob
positions with track parameters using a
Kalman filter to improve accuracy.6 It then
generates new tracks from unassociated blobs
and removes tracks that aren’t associated with
any of the blobs for a certain number of frames.

To seamlessly track vehicles using multi-
ple cameras, the system needs to consistently
maintain object identity. When the cameras’
fields of view (FOV) are partially overlap-
ping, we have a handoff problem (similar to
handoffs in a cellular network); objects leav-
ing one camera must immediately transfer to
the other camera. As figure 2 shows, when
an object touches any point on a dotted line
in one camera, the system checks the corre-
sponding point in the other camera to locate
the object and passes the track from the first
camera to the second.

When the camera FOVs don’t overlap and
are separated by a large distance, we have a
reidentification problem. Reidentification is
more difficult than camera handoff because
an object in one camera could have several
potential matches in the other camera, and we
might not always be able to disambiguate all
the matches. In such a case, it’s more useful
to get a few reliable matches than many less
reliable matches. Timothy Huang and Stuart
Russell developed a probabilistic framework
for the vehicle reidentification problem.7

Based on this framework, we use properties
of color, size, and time of transit between the
cameras to match vehicles between cameras.
Because the proportion of colored vehicles
and large vehicles is small, the matches with
such vehicles are more likely to be reliable.
So, we only select vehicles having sufficiently
high color saturation or a size larger than a
threshold to avoid false matches. The algo-
rithm for vehicle reidentification is as follows:

• Vehicle detection: Detect vehicles in up-
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Figure 2. Vehicle tracking and handoff between cameras with partially overlapping
fields of view.



stream and downstream cameras (the first
and second camera along the direction of
traffic flow) using background subtraction
and extract their snapshots.

• Feature extraction: For all vehicles in both
cameras, use K-means clustering to group
colors in vehicle pixels and select the color
whose cluster has the largest number of
pixels. Estimate the vehicle size based on
the pixels of dominant color. Finally, select
vehicles meeting the minimal color-satu-
ration and size requirements.

• Matching: For each vehicle in the upstream
camera, select vehicles in the downstream
camera that arrived within a window based
on expected transit time. Then compute the
weighted distance between the upstream
vehicle and all selected downstream vehi-
cles. Assign confidence scores to each
match based on the weighted distance.
Finally, select matches with a confidence
score greater than a threshold (we adjust
the threshold to detect as many matches as
possible while keeping the number of false
matches to a tolerable level).

Figure 3 shows our experiments with vehi-
cle reidentification using a pair of cameras on
the Coronado Bridge. We’re currently evalu-
ating and improving the algorithm.

Sensor fusion for monitoring
infrastructure health

Many civil structures have been instru-
mented with various types of sensors for
monitoring their structural health. Seismic
sensors such as strain gauges and accelerom-
eters can provide temporal signatures of vehi-
cles passing over them, which could be used
to extract the weight and effect of vehicles on
the structure. However, seismic sensors are
also sensitive to other natural and artificial
phenomena, such as earthquakes, blasts, and
external vibrations. Video sensors could help
distinguish these phenomena from normal
vehicular traffic and give rich information
about the vehicles’ shape, size, color, veloc-
ity, and track history (paths taken). 

Figure 4 shows a block diagram of a sys-
tem under development for monitoring a
bridge’s structural health by combining infor-
mation from both seismic and video sensors.
The system’s vision module processes video
streams to detect and track vehicles and
extract their image properties. These can be
used in conjunction with the responses from
seismic sensors to help determine the effect
of various types of vehicle loads on a bridge. 

Camera 2
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Distance between cameras
is approximately two miles

Extracted matches:
Green: 20–40%, Yellow: 40–75%, Red: 75–100%

Extract features such
as color, size,

and time of arrival

Match features using
weighted distance,
assign confidence

measures  

Detect vehicles Detect vehicles

Figure 3. Vehicle reidentification using videos from the Caltrans Traffic Management Cen-
ter’s cameras on the Coronado Bridge. (aerial image courtesy of the US Geological Survey)
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Figure 4. Block diagram for civil-infrastructure monitoring.
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Figure 5 shows an application for detecting
vehicles and extracting their properties, includ-
ing the vehicle snapshots from video process-
ing and responses from the strain gauges for
both directions of traffic. To distinguish
between buses and cars, we recorded the

• larger of the two peak responses (corre-
sponding to each wheel base) that the strain
gauge recorded when detecting the vehicle,

• time interval between two peak responses,
• vehicle blob area obtained from video-

based detection, and
• vehicle blob’s aspect ratio (height to width).

Each property is larger for buses than for cars.
We combined these features using Fisher

linear discriminant analysis8 to find an opti-
mal linear combination of the logarithms (for

scale invariance) of these properties that max-
imizes the variation between the classes and
minimizes the variation within each class.
The boundary between the two classes is a
hyperplane obtained by thresholding this lin-
ear discriminant using Bayesian error crite-
rion to minimize the number of classification
errors.8

Perimeter sentry with active 
camera control

For continuous monitoring of wide areas, it
isn’t always practical to have a person contin-
uously view the video to identify suspicious
activities. It helps to have a system that can
automatically extract and summarize interest-
ing events. An important application of such a
system is a perimeter sentry, which guards a
preconfigurable monitoring zone or virtual

fence. Background subtraction detects mov-
ing objects such as people and vehicles, which
are tracked over frames.6 Any track that
breaches the virtual fence, such as a person
passing in that zone, triggers an alarm. In addi-
tion, such an event can also initiate active con-
trol of other cameras in the array. For exam-
ple, using the location of the monitoring zone,
a system could make a PTZ camera point to
the zone to obtain finer event details.

Figure 6 shows an application of the
perimeter sentry. A car entering the protected
zone at the garage triggers another camera
that zooms in toward the event and captures
a high-resolution video sequence. A face
detection module then captures the intruder’s
face. In another scenario, a stalled vehicle
triggers another camera to zoom in on details
such as the vehicle’s license plate.

Deployment
We’ve successfully deployed and tested

the systems just described on the UCSD
campus and on other sites. In addition to the
vehicle reidentification experiment we did
on the Coronado Bridge, we’ve performed
vehicle tracking and traffic parameter esti-
mation with cameras overlooking the Inter-
state 5 freeway passing through the campus.
We also demonstrated perimeter sentry near
the Coronado Bridge, successfully detecting
intrusions in the security zone, and have
deployed multimodal vehicle data extraction
with video and seismic sensors on a campus
road with significant traffic. We’re working
on deploying a similar system on a bridge
over the I-5 freeway. We’ve also demon-
strated multicamera handoff with cameras
on a campus street. 

In addition, we successfully deployed sev-
eral DIVA modules at Super Bowl XXXVII
(see figure 7).9 We mounted a high-resolu-
tion thermal camera near a riverbed beside
the stadium to detect humans and animals in
visually cluttered scenes on a 24-hour basis.
We used traffic-flow analysis to monitor the
peripheral traffic on a nearby road. We also
installed an omnicamera in downtown San
Diego to simultaneously monitor traffic con-
ditions using a digital televiewer (a software
interface unwarping omnivideo to perspec-
tive video on customizable PTZ settings) and
estimate the crowd size. These surveillance
nodes were remotely linked to and controlled
by the perimeter sentry command center in
Sea Port Village (in downtown San Diego),
for the city authorities, police, and first
responders. 
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Tracking people, capturing
events, and analyzing activities

In contrast to the outdoor applications we’ve
described, indoor DIVA systems use multiple
types of cameras with highly overlapped FOVs
for versatile human-related event and activity
analysis. The objectives for such systems
involve developing sensor networks that derive
multilevel awareness of human activity and
identity. Figure 8a shows a DIVA system for
deriving such multilevel semantic description
of activities in a room. The system includes a
video analysis level that processes camera
array videos for person segmentation. With
both omni and rectilinear PTZ video arrays,
the system can obtain a multiresolution repre-
sentation of human activities.10 Next, the local-
ization level detects people and tracks them
continuously. PTZ array also captures human
faces.10 Then, the gesture analysis and identi-
fication levels derive higher semantic details
for human gesture and identity. The integra-
tion and visualization level derives the spatial-
temporal co-occurrence of the events for high-
level activity awareness to focus on certain
humans. This level also archives and visual-
izes the events in real time as well as replays
them for offline investigative purposes.4

Real-time 3D person tracking
For real-time indoor 3D person tracking,

the omni array videos first undergo pixel-level

processing that segments the human silhou-
ettes by background subtraction with shadow
elimination (see figure 8). The system mea-
sures the horizontal locations and heights of
people from the silhouettes by triangulation
with the calibrated omnivideo array.10 It then
associates these 3D measurements of humans

with the existing tracks and decides track ini-
tialization and termination according to time
constraints. Finally, it updates Kalman track
filters with the new measurements to output
the estimated and predicted track locations. 

After tracking the person, the system deter-
mines a focus of attention to capture the face
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Figure 6. Active camera control. DIVA can define a security zone for intrusion detection,
and an event can activate another camera to capture a close-up view.
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Figure 7. The DIVA security network deployment in Super Bowl XXXVII at San Diego in January 2003.
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(see figure 8a). Based on the head location,
the system can choose a nearby PTZ camera
to focus on the subject’s face.10 It can then
detect skin-tone regions and elliptical edges
for face contour from the image to find plau-
sible faces (see figure 8b). It verifies the can-
didates using a face classifier and updates the
face tracks. Using this real-time scheme, we
can robustly detect a face under challenging
environmental conditions. 

Face orientation estimation is useful in
assessing a subject’s focus of attention and
intent. As figure 8b shows, the system first
projects the face video frames into a facial
feature subspace and then computes the like-
lihood scores of a face frame associated with
various face orientation clusters. It tracks
these orientation likelihoods across frames
using a hidden Markov model (HMM),
whose state sequence is equivalent to the final
face orientation sequence. For face recogni-
tion,10 it trains clusters of different identities
in the feature subspace and accumulates the
identity likelihoods across frames in a video
segment to make the final decision. Our
experiments have shown that these novel
video-based face analysis algorithms surpass
single frame-based methods in reliability due
to information accumulation over time. 

DIVA can also capture human activities
using 3D human body gesture analysis. As
figure 8a shows, the system can reconstruct
voxels (volume elements—3D analog of pix-
els) of human subjects from the array
omnivideos. Then we can form a cylindrical,
3D-shape-context descriptor to each subject
to capture the body configurations. A vocab-
ulary of HMMs model the dynamics of the
3D body configurations or gestures. Given a
gesture sequence, the 3D-shape-context his-
tograms are vector quantized and the index
sequence goes to the HMM vocabulary to
decide the final gesture by maximum likeli-
hood. With this scheme, we can robustly per-
form gesture recognition even with noisy and
low-resolution human body voxelization. 

Integrated situational awareness
We’ve deployed the real-time 3D tracker in

a 6.7 � 6.6 m room with four omni cameras,
each of which captures a 640 � 480 pixel
video. This lets us obtain tracking accuracy of
approximately 20 cm for five people simulta-
neously.10 For a person entering or exiting the
room, access zones are defined and displayed
in the CoVE interface as shown in figure 9a.
The tracker sends data to the NeST server to
monitor the zones and to archive data over

long periods. This lets us accumulate passing
counts of the zones with the track indices. 

As shown in the dialog box in figure 8a, a
PTZ camera is driven by the 3D tracker to
capture the human face upon entrance. The
face is detected in approximately 15 frames
per second and identified by the system.10

Also, the face image is attached to the human
bounding box in CoVE as shown in figure
9b. Long-term face archive is shown in fig-
ure 9b. The 3D tracker monitors the room
continuously and archives the entering peo-
ple automatically with a timestamp. The
tracker is suitable for visual surveillance and
forensic support applications. As an attentive
scenario, multiple people can be sequentially
scanned using the PTZ camera closest to
each person. When a person enters or exits,
the system would reset the scanning order. 

Currently, the gesture recognition and
video-based face orientation and recognition
modules that involve HMM are implemented
in Matlab. Although running offline, they
give very promising accuracies.10 System sit-
uational awareness would be enhanced once
their C++ implementations are available. 

Computer vision will play a significant
role in enhancing personal safety and pro-
tecting infrastructure and properties within
national borders. Remote monitoring of
transportation facilities and public spaces as
well as automatic notification systems trig-
gered by potentially dangerous events can
certainly incorporate vision systems as essen-
tial components. However, such applications
pose major challenges to the existing and
commercially available systems, mainly due
to strict requirements of very high detection
rates and almost zero false alarm rates,
robustness to environmental variations, dis-
tributed and almost ubiquitous coverage, and
real-time or near-real-time performance. 

Fortunately, systems similar to those we’ve
discussed promise to provide solutions that
address specific “threats” encountered in pro-
tecting critical infrastructures, national land-
marks, or public spaces. For instance, in the
event of natural or man-made disaster, a DIVA-
type system can provide an exact visual and
seismic damage assessment. If a protected site
such as an airport runway, port facility, or mil-
itary base is breached, a DIVA-based system
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can identify the point of breach, take close-up
video images of the event, track the vehicle or
person responsible for the breach, and warn the
appropriate authorities.
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