
Exploiting relationships for domain-independent data cleaning∗†

Dmitri V. Kalashnikov Sharad Mehrotra Zhaoqi Chen

Computer Science Department

University of California, Irvine

Appeared in SIAM International Conference on Data Mining (SDM), April 21–23, 2005

Abstract

In this paper, we address the problem of reference dis-
ambiguation. Specifically, we consider a situation where
entities in the database are referred to using descriptions
(e.g., a set of instantiated attributes). The objective of
reference disambiguation is to identify the unique entity
to which each description corresponds. The key differ-
ence between the approach we propose (called RelDC)
and the traditional techniques is that RelDC analyzes
not only object features but also inter-object relation-
ships to improve the disambiguation quality. Our ex-
tensive experiments over two real datasets and over syn-
thetic datasets show that analysis of relationships sig-
nificantly improves quality of the result.

1 Introduction

Recent surveys [3] show that more than 80% of re-
searchers working on data mining projects spend more
than 40% of their project time on cleaning and prepa-
ration of data. The data cleaning problem often arises
when information from heterogeneous sources is merged
to create a single database. Many distinct data cleaning
challenges have been identified in the literature: deal-
ing with missing data [20], handling erroneous data [21],
record linkage [6, 7], and so on. In this paper, we ad-
dress one such challenge, which we refer to as reference
disambiguation.

The reference disambiguation problem arises when
entities in a database contain references to other enti-
ties. If entities were referred to using unique identifiers,
then disambiguating those references would be straight-
forward. Instead, frequently, entities are represented us-
ing properties/descriptions that may not uniquely iden-
tify them leading to ambiguity. For instance, a database
may store information about two distinct individuals
‘Donald L. White’ and ‘Donald E. White’, both of whom
are referred to as ‘D. White’ in another database. Ref-
erences may also be ambiguous due to differences in the
representations of the same entity and errors in data

∗RelDC project (http://www.ics.uci.edu/~dvk/RelDC)
†This work was supported in part by NSF grants 0331707,

0331690, and IRI-9703120.

entries (e.g., ‘Don White’ misspelled as ‘Don Whitex’).
The goal of reference disambiguation is for each refer-
ence to correctly identify the unique entity it refers to.

The reference disambiguation problem is related to
the problem of record deduplication or record linkage
[7, 6] that often arises when multiple tables (from
different data sources) are merged to create a single
table. The causes of record linkage and reference
disambiguation problems are similar; viz., differences in
representations of objects across different datasets, data
entry errors, etc. The differences between the two can
be intuitively viewed using the relational terminology
as follows: while the record linkage problem consists of
determining when two records are the same, reference
disambiguation corresponds to ensuring that references
(i.e., “foreign keys”1) in a database point to the correct
entities.

Given the tight relationship between the two data
cleaning tasks and the similarity of their causes, existing
approaches to record linkage can be adapted for refer-
ence disambiguation. In particular, feature-based simi-
larity (FBS) methods that analyze similarity of record
attribute values (to determine whether two records are
the same) can be used to determine if a particular ref-
erence corresponds to a given entity or not. This paper
argues that the quality of disambiguation can be signifi-
cantly improved by exploring additional semantic infor-
mation. In particular, we observe that references occur
within a context and define relationships/connections
between entities. For instance, ‘D. White’ might be used
to refer to an author in the context of a particular pub-
lication. This publication might also refer to different
authors, which can be linked to their affiliated organiza-
tions etc, forming chains of relationships among entities.
Such knowledge can be exploited alongside attribute-
based similarity resulting in improved accuracy of dis-
ambiguation.

In this paper, we propose a domain-independent

1We are using the term foreign key loosely. Usually, foreign
key refers to a unique identifier of an entity in another table.

Instead, foreign key above means the set of properties that serve

as a reference to an entity.

1

data cleaning approach for reference disambiguation, re-
ferred to as Relationship-based Data Cleaning (RelDC),
which systematically exploits not only features but also
relationships among entities for the purpose of disam-
biguation. RelDC views the database as a graph of en-
tities that are linked to each other via relationships. It
first utilizes a feature-based method to identify a set
of candidate entities (choices) for a reference to be dis-
ambiguated. Graph theoretic techniques are then used
to discover and analyze relationships that exist between
the entity containing the reference and the set of candi-
dates.

The primary contributions of this paper are: (1)
developing a systematic approach to exploiting both at-
tributes as well as relationships among entities for refer-
ence disambiguation (2) establishing that exploiting re-
lationships can significantly improve the quality of refer-
ence disambiguation by testing the developed approach
over 2 real-world datasets as well as synthetic datasets.

This paper presents the core of the RelDC ap-
proach, details of RelDC can be found in [16] where we
discuss various implementations, optimizations, compu-
tational complexity, sample content and sample graphs
for real datasets, and other issues not covered in this
paper. The rest of this paper is organized as follows.
Section 2 presents a motivational example. In Section 3,
we precisely formulate the problem of reference disam-
biguation and introduce notation that will help explain
the RelDC approach. Section 4 describes the RelDC ap-
proach. The empirical results of RelDC are presented
in Section 5. Section 6 contains the related work, and
Section 7 concludes the paper.

2 Motivation for analyzing relationships

In this section we will use an instance of the “author
matching” problem to illustrate that exploiting rela-
tionships among entities can improve the quality of
reference disambiguation. We will also schematically
describe one approach that analyzes relationships in
a systematic domain-independent fashion. Consider a

�
� ���

�� ���

��

��

��

��	
����

�������

��������
�

����������

���
�

���

��

�

��
��������

!"�#��

��

���

�$ ���

�
%
�
��

Figure 1: Graph for the publications example

database about authors and publications. Authors are
represented in the database using the attributes 〈id,
authorName, affiliation〉 and information about pa-
pers is stored in the form 〈id, title, authorRef1, . . . ,
authorRefN〉. Consider a toy database consisting of the
following authors and publications records.

1. 〈A1, ‘Dave White’, ‘Intel’〉,

2. 〈A2, ‘Don White’, ‘CMU’〉,
3. 〈A3, ‘Susan Grey’, ‘MIT’〉,
4. 〈A4, ‘John Black’, ‘MIT’〉,
5. 〈A5, ‘Joe Brown’, unknown〉,
6. 〈A6, ‘Liz Pink’, unknown〉.

1. 〈P1, ‘Databases . . . ’, ‘John Black’, ‘Don White’〉,
2. 〈P2, ‘Multimedia . . . ’, ‘Sue Grey’, ‘D. White’〉,
3. 〈P3, ‘Title3 . . . ’, ‘Dave White’〉,
4. 〈P4, ‘Title5 . . . ’, ‘Don White’, ‘Joe Brown’〉,
5. 〈P5, ‘Title6 . . . ’, ‘Joe Brown’, ‘Liz Pink’〉,
6. 〈P6, ‘Title7 . . . ’, ‘Liz Pink’, ‘D. White’〉.

The goal of the author matching problem is to
identify for each authorRef in each paper the correct
author it refers to.

We can use existing feature-based similarity (FBS)
techniques to compare the description contained in each
authorRef in papers with values in authorName at-
tribute in authors. This would allow us to resolve almost
every authorRef references in the above example. For
instance, such methods would identify that ‘Sue Grey’
reference in P2 refers to A3 (‘Susan Grey’). The only
exception will be ‘D. White’ references in P2 and P6:
‘D. White’ could match either A1 (‘Dave White’) or A2

(‘Don White’).
Perhaps, we could disambiguate the reference ‘D.

White’ in P2 and P6 by exploiting additional attributes.
For instance, the titles of papers P1 and P2 might be
similar while titles of P2 and P3 might not, suggesting
that ‘D. White’ of P2 is indeed ‘Don White’ of paper
P1. We next show that it may still be possible to
disambiguate the references ‘D. White’ in P2 and P6

by analyzing relationships among entities even if we are
unable to disambiguate the references using title (or
other attributes).

First, we observe that author ‘Don White’ has co-
authored a paper (P1) with ‘John Black’ who is at MIT,
while the author ‘Dave White’ does not have any co-
authored papers with authors at MIT. We can use this
observation to disambiguate between the two authors.
In particular, since the co-author of ‘D. White’ in P2 is
‘Susan Grey’ of MIT, there is a higher likelihood that
the author ‘D. White’ in P2 is ‘Don White’. The reason
is that the data suggests a connection between author
‘Don White’ with MIT and an absence of it between
‘Dave White’ and MIT.

Second, we observe that author ‘Don White’ has
co-authored a paper (P4) with ‘Joe Brown’ who in turn
has co-authored a paper with ‘Liz Pink’. In contrast,
author ‘Dave White’ has not co-authored any papers
with either ‘Liz Pink’ or ‘Joe Brown’. Since ‘Liz Pink’
is a co-author of P6, there is a higher likelihood that ‘D.
White’ in P6 refers to author ‘Don White’ compared
to author ‘Dave White’. The reason is that often co-
author networks form groups/clusters of authors that

2

do related research and may publish with each other.
The data suggests that ‘Don White’, ‘Joe Brown’ and
‘Liz Pink’ are part of the cluster, while ‘Dave White’ is
not.

At first glance, the analysis above (used to disam-
biguate references that could not be resolved using con-
ventional feature-based techniques) may seem ad-hoc
and domain dependent. A general principle emerges
if we view the database as a graph of inter-connected
entities (modeled as nodes) linked to each other via
relationships (modeled as edges). Figure 1 illustrates
the entity-relationship graph corresponding to the toy
database consisting of authors and papers records. In
the graph, entities containing references are linked to
the entities they refer to. For instance, since the refer-
ence ‘Sue Grey’ in P2 is unambiguously resolved to au-
thor ‘Susan Grey’, paper P2 is connected by an edge to
author A3. Similarly, paper P5 is connected to authors
A5 (‘Joe Brown’) and A6 (‘Liz Pink’). The ambiguity
of the references ‘D. White’ in P2 and P6 is captured
by linking papers P2 and P6 to both ‘Dave White’ and
‘Don White’ via two “choice nodes” (labeled ‘1’ and ‘2’
in the figure). These “choice nodes” serve as OR-nodes
in the graph and represent the fact that the reference
‘D. White’ refers to either one of the entities linked to
the choice nodes.

Given the graph view of the toy database, the
analysis we used to disambiguate ‘D. White’ in P2 and
P6 can be viewed as an application of the following
general principle:

Context Attraction Principle (CAP): If refer-
ence r made in the context of entity x refer to an entity
yj, whereas the description provided by r matches mul-
tiple entities y1, . . . , yj , . . . , yN , then x and yj are likely
to be more strongly connected to each other via chains of
relationships than x and yl (l = 1, 2, . . . , N ; l 6= j).

The first observation we made, regarding disam-
biguation of ‘D. White’ in P2, corresponds to the
presence of the following path (i.e., relationship chain
or connection) between the nodes ‘Don White’ and
P2 in the graph: P2 � ‘Susan Grey’ � ‘MIT’ �

‘John Black’ � P1 � ‘Don White’. Similarly, the sec-
ond observation, regarding disambiguation of ‘D. White’
in P6 as ‘Don White’, was based on the presence of the
following path: P6 � ‘Liz Pink’ � P5 � ‘Joe Brown’ �

P4 � ‘Don White’. There were no paths between P2

and ‘Dave White’ or between P6 and ‘Dave White’ (if
we ignore ‘1’ and ‘2’ nodes). Thus, after applying the
CAP principle, we concluded that the ‘D. White’ refer-
ences in both cases probably corresponded to the author
‘Don White’. In general, there could have been paths
not only between P2 (P6) and ‘Don White’, but also
between P2 (P6) and ‘Dave White’. In that case, to de-

termine if ‘D. White’ is ‘Don White’ or ‘Dave White’ we
should have been able to measure whether ‘Don White’
or ‘Dave White’ is more strongly connected to P2 (P6).

The generic approach therefore first discovers con-
nections between the entity, in the context of which the
reference appears and the matching candidates for that
reference. It then measures the connection strength of
the discovered connections in order to give preference to
one of the matching candidates. The above discussion
naturally leads to two questions:

1. Does the context attraction principle hold over real
datasets. That is, if we disambiguate references
based on the principle, will the references be cor-
rectly disambiguated?

2. Can we design a generic solution to exploiting
relationships for disambiguation?

Of course, the second question is only important if the
answer to the first is positive. However, we cannot re-
ally answer the first unless we develop a general strat-
egy to exploiting relationships for disambiguation and
testing it over real data. We will develop one such
general, domain-independent strategy for exploiting re-
lationships for disambiguation, which we refer to as
RelDC in Section 4. We perform extensive testing of
RelDC over both real data from two different domains
as well as synthetic data to establish that exploiting re-
lationships (as is done by RelDC) significantly improves
the data quality. Before we develop RelDC, we first de-
velop notation and concepts needed to explain our ap-
proach in Section 3.

3 Problem formalization

3.1 Notation Let D be the database which con-
tains references that are to be resolved. Let X =
{x1, x2, . . . , x|X|} be the set of all entities in D. Entities
here have the same meaning as in the E/R model. Each
entity xi consists of a set of properties and contains a
set of nxi

references xi.r1, xi.r2, . . . , xi.rnxi
. Each ref-

erence xi.rk is essentially a description and may itself
consist of one or more attributes xi.rk.b1, xi.rk.b2,
For instance, in the example from Section 2, paper en-
tities contain one-attribute authorRef references in the
form 〈author name〉. If, besides author names, author
affiliation were also stored in the paper records, then
authorRef references would have consisted of two at-
tributes – 〈author name, author affiliation〉.

Choice set. Each reference xi.rk semantically
refers to a single specific entity in X which we denote by
d[xi.rk]. The description provided by xi.rk may, how-
ever, match a set of one or more entities in X. We refer
to this set as the choice set of reference xi.rk and de-
note it by CS[xi.rk]. The choice set consists of all the
entities that xi.rk could potentially refer to. We assume

3

CS[xi.rk] is given for each xi.rk. If it is not given, we
assume a feature-based similarity approach is used to
construct CS[xi.rk] by choosing all of the candidates
such that FBS similarity between them and xi.rk ex-
ceed a given threshold. To simplify notation, we will
always assume CS[xi.rk] has N (i.e., N = |CS[xi.rk]|)
elements y1,y2,. . . ,yN .

3.2 The Entity-Relationship Graph RelDC
views the resulting database D as an undirected entity-
relationship graph (also known as Attributed Relational
Graph (ARG)) G = (V,E), where V is the set of nodes
and E is the set of edges. Each node corresponds to
an entity and each edge to a relationship. Notation
v[xi] denotes the vertex in G that corresponds to entity
xi ∈ X. Note that if entity u contains a reference to
entity v, then the nodes in the graph corresponding to u
and v are linked since a reference establishes a relation-
ship between the two entities. For instance, authorRef
reference from paper P to author A corresponds to “A
writes P” relationship.

In the graph G, edges have weights, nodes do not
have weights. Each edge weight is a real number in [0, 1],
which reflects the degree of confidence the relationship,
corresponding to the edge, exists. For instance, in the
context of our author matching example, if we are 100%
confident ‘John Black’ is ffiliated with MIT, then we
assign weight of 1 to the corresponding edge. However,
if we are only 80% confident, we assign the weight of
0.80 to that edge. By default, all weights are equal to 1.
Notation “edge label” means the same as “edge weight”.

References and linking. If CS[xi.rk] has only
one element, then xi.rk is resolved to y1, and graph
G contains an edge between v[xi] and v[y1]. This edge
is assigned a weight of 1 to denote that the algorithm
is 100% confident that d[xi.rk] is y1. If CS[xi.rk] has

�����

�����

������	
��

�����

��������

			

� �
��

�
���

���� ���	
��

	�����������

��������	
��
��

� �

�
�

��

Figure 2: A choice node

more than 1 elements, then graph G contains a choice
node cho[xi.rk], as shown in Figure 2, to reflect the
fact that d[xi.rk] can be one of y1, y2, . . . , yN . Node
cho[xi.rk] is linked with node v[xi] via edge e0 =
(v[xi], cho[xi.rk]). Node cho[xi.rk] is also linked with N
nodes v[y1], v[y2], . . . , v[yN], for each yj in CS[xi.rk], via
edges ej = (cho[xi.rk], v[yj]) (j = 1, 2, . . . , N). Nodes
v[y1], v[y2], . . . , v[yN] are called the options of choice
cho[xi.rk]. Edges e1, e2, . . . , eN are called the option-
edges of choice cho[xi.rk]. The weights of option-edges

are called option-edge weights or simply option weights.
The weight of edge e0 is 1. Each weight wj of edges
ej (j = 1, 2, . . . , N) is undefined initially. Since these
option-edges e1, e2, . . . , eN represent mutually exclusive
alternatives, the sum of their weights should be 1:
w1 + w2 + · · · + wN = 1.

3.3 The objective of reference disambiguation
To resolve reference xi.rk means to choose one entity yj

from CS[xi.rk] in order to determine d[xi.rk]. If entity
yj is chosen as the outcome of such a disambiguation,
then xi.rk is said to be resolved to yj or simply resolved.
Reference xi.rk is said to be resolved correctly if this
yj is d[xi.rk]. Notice, if CS[xi.rk] has just one element
y1 (i.e., N = 1), then reference xi.rk is automatically
resolved to y1. Thus reference xi.rk is said to be
unresolved or uncertain if it is not resolved yet to any
yj and also N > 1.

From the graph theoretic perspective, to resolve
xi.rk means to assign weights of 1 to one edge ej ,
1 ≤ j ≤ N and assign weights of 0 to the other N − 1
edges e1, e2, . . . , ej−1, ej+1, . . . , eN . This will indicate
that the algorithm chooses yj as d[xi.rk].

The goal of reference disambiguation is to resolve
all references as correctly as possible, that is for each
reference xi.rk to correctly identify d[xi.rk]. We will
use notation Resolve(xi.rk) to refer to the procedure
which resolves xi.rk. The goal is thus to construct such
Resolve(·) which should be as accurate as possible. The
accuracy of reference disambiguation is the fraction of
references being resolved that are resolved correctly.

The alternative goal is for each yj ∈ CS[xi.rk]
to associate weight wj that reflects the degree of con-
fidence that yj is d[xi.rk]. For that alternative goal,
Resolve(xi.rk) should label each edge ej with such a
weight. Those weights can be interpreted later to
achieve the main goal: for each xi.rk try to identify
only one yj as d[xi.rk] correctly. We emphasize this al-
ternative goal since most of the discussion of RelDC ap-
proach is devoted to one approach for computing those
weights. An interpretation of those weights (in order to
try to identify d[xi.rk]) is a small final step of RelDC.
Namely, we achieve this by picking yj such that wj is
the largest among w1, w2, . . . , wN . That is, the outcome
of Resolve(xi.rk) is yj : wj = maxN

l=1 wl.

3.4 Connection Strength and Context Attrac-
tion Principle As mentioned before, RelDC resolves
references based on context attraction principle that was
discussed in Section 2. We now state the principle more
formally. Crucial to the principle is the notion of con-
nection strength between two entities xi and yj (denoted
c(xi, yj) which captures how strongly xi and yj are con-
nected to each other through relationships. Many differ-

4

ent approaches can be used to measure c(xi, yj) which
will be discussed in Section 4. Given the concept of
c(xi, yj), we can restate the context attraction principle
as follows:

Context Attraction Principle: Let xi.rk be
a reference and y1, y2, . . . , yN be elements of its
choice set CS[xi.rk] with corresponding option weights
w1, w2, . . . , wN (recall that w1+w2+· · ·+wN = 1). The
CAP principle states that for all l, j ∈ [1, N], if cl ≥ cj

then wl ≥ wj , where cl = c(xi, yl) and cj = c(xi, yj).

4 The RelDC approach

We now have developed all the concepts and notation
needed to explain RelDC approach for reference disam-
biguation. Input to RelDC is the entity-relationship
graph G discussed in Section 3 in which nodes corre-
spond to entities and edges to relationships. We assume
that feature-based similarity approaches have been used
in constructing the graph G. The choice nodes are cre-
ated only for those references that could not be dis-
ambiguated using only attribute similarity. RelDC will
exploit relationships for further disambiguation and will
output a resolved graph G in which each entity is fully
resolved.

RelDC disambiguates references using the following
four steps:

1. Compute connection strengths. For each
reference xi.rk compute the connection strength
c(xi, yj) for each yj ∈ CS[xi.rk]. The result is a
set of equations that relate c(xi, yj) with the op-
tion weights: c(xi, yj) = gij(w). Here, w denote
the set of all option weights in the graph G.

2. Determine equations for option weights. Us-
ing the equations from Step 1 and the CAP, deter-
mine a set of equations that relate option weights
to each other.

3. Compute weights. Solve the set of equations
from Step 2.

4. Resolve References. Utilize/interpret the
weights computed in Step 3 as well as attribute-
based similarity to resolve references.

We now discuss the above steps in more detail in
the following subsections.

4.1 Computing Connection Strength Computa-
tion of c(xi, yj) consists of two phases. The first phase
discovers connections between xi and yj . The second
phase computes/measures the strength in connections
discovered by the first phase.

4.1.1 The connection discovery phase. In gen-
eral there can be many connections between v[xi] and
v[yj] in G. Intuitively, many of those (e.g., very long

ones) are not very important. To capture most impor-
tant connections while still being efficient, the algorithm
computes the set of all L-short simple paths PL(xi, yj)
between nodes v[xi] and v[yj] in graph G. A path is
L-short if its length is no greater than parameter L. A
path is simple if it does not contain duplicate nodes.

Illegal paths. Not all of the discovered paths
are considered when computing c(xi, yj) (to resolve
reference xi.rk). Let e1, e2, . . . , eN be the option-edges
associated with the reference xi.rk. When resolving
xi.rk, RelDC tries do determine the weights of these
edges via connections that exist in the remainder of
the graph not including those edges. To achieve this,

���
������

�

�

�

�����

�

	����

	�
��

	�
��

	�
��

Figure 3: Graph

� ��

���
�������������������

�

Figure 4: c(p)?

RelDC actually discovers paths not in graph G, but
in G̃ = G − cho[xi.rk], see Figure 3. That is, G̃
is graph G with node cho[xi.rk] removed. Also, in
general, paths considered when computing c(xi, yj) may
contain option-edges of some choice nodes. If a path
contains an option-edge of a choice node, it should not
contain another option-edge of the same choice node.
For instance, if a path used to compute connection
strength between two nodes in the graph contained an
option edge ej of the choice node shown in Figure 2,
it must not contain any of the rest of the option-edges
e1, e2, . . . , ej−1, ej+1, . . . , eN .

4.1.2 Computing connection strength A natural
way to compute the connection strength c(u, v) between
nodes u and v is to compute it as the probability to
reach node v from node u via random walks in graph G
where each step is done with certain probability. Such
problems have been studied for graphs in the previous
work under Markovian assumptions. The graph in our
case is not Markovian due to presence of illegal paths
(introduced by choice nodes). So those approaches
cannot be applied directly. In [16] we have developed
the probabilistic model (PM) which treats edge weights
as probabilities that those edges exist and which can
handle illegal paths. In this section we present the
weight-based model (WM) which is a simplification of
PM. Other models can be derived from [11, 24].

WM is a very intuitive model, which is suited well
for illustrating issues related to computing c(u, v). WM
computes c(u, v) as the sum

∑
p∈PL(u,v) c(p) of the

connection strength c(p) of each path p in PL(u, v).
The connection strength c(p) of path p from u to v is
the probability to follow path p in graph G. Next we

5

explain how WM computes c(p).
Motivating c(p) formula. Which factors should

be taken into account when computing the connection
strength c(p) of each individual path p?

Figure 4 illustrates two different paths (or connec-
tions) between nodes u and v: pa=u�a�v and pb=u�b
�v. Assume that all edges in this figure have weight of
1. Let us understand which connection is better.

Both connections have an equal length of two. One
connection is going via node a and the other one via b.
The intent of Figure 4 is to show that b “connects” many
things, not just u and v, whereas a “connects” only u
and v. We argue the connection between u and v via b is
much weaker than the connection between u and v via
a: since b connects many things it is not surprising we
can connect u and v via b. For example, for the author
matching problem, u and v can be two authors, a can
be a publication and b a university.

To capture the fact that c(pa) > c(pb), we measure
c(pa) and c(pb) as the probabilities to follow paths pa

and pb respectively. Notice, measures such as path
length, network flow do not capture this fact. We
compute those probabilities as follows. For path pb we
start from u. Next we have a choice to go to a or b
with probabilities of 1

2 , and we choose to follow (u, b)
edge. From node b we can go to any of the N − 1 nodes
(cannot go back to u) but we go specifically to v. So
the probability to reach v via path pb is 1

2(N−1) . For

path pa we start from u, we go to a with probability 1
2

at which point we have no choice but to go to v, so the
probability to follow pa is 1

2 .

�
�
��

�
�
��

�
�
��

�� ��
����

�
��
�� � �

��

��

��� ���

�
�
�
�	

 ������

���

�
�
��
�

� �
��

��

��� ���

�

�
��
�
��
�
�

	
�	����

��
����

�
��
�� � �

��

��

��� ���

Figure 5: Computing c(p) of path p = v1 � v2 � · · · �

vm. Only “possible-to-follow” edges are shown.

General WM formula. In general, each L-short
simple path p can be viewed as a sequence of m nodes
v1, v2, . . . , vm, where m ≤ L + 1, as shown in Figure 5.
Figure 5 shows that from node vi it is possible to follow2

ni+1 edges labeled wi,0, wi,1, . . . , wi,ni
. The probability

to follow the edge labeled wi,0 is proportional to weight
wi,0 and computed as wi,0/(

∑ni

j=0 wi,j). The probability
to follow path p is computed as the probability to follow
each of its edges:

(4.1) c(p) =
m−1∏

i=1

wi,0∑ni

j=0 wi,j

.

2It is not possible to follow zero-weight edges, and edges

following which would make the path not simple.

The total connection strength between nodes u and v is
computed as the sum of connection strengths of paths
in PL(u, v):

(4.2) c(u, v) =
∑

p∈PL(u,v)

c(p).

Measure c(u, v) is the probability to reach v from u
by following only L-short simple paths, such that the
probability to follow an edge is proportional to the
weight of the edge.

For instance, for the toy database we have:

1. c1 = c(P2, ‘Dave White’) = c(P2 � Susan � MIT �

John � P1 � Don � P4 � Joe � P5 � Liz � P6 �

‘2’ � Dave White) = w3

2
.

2. c2 = c(P2, ‘Don White’) = c(P2 � Susan � MIT �

John � P1 � ‘Don White’) = 1.
3. c3 = c(P6, ‘Dave White’) = w1

2

4. c4 = c(P6, ‘Don White’) = 1

4.2 Determining equations for option-edge
weights Given the connection strength measures
c(xi, yj) for each unresolved reference xi.rk and its op-
tions yj , we can use the context attraction principle to
determine the relationships between the weights associ-
ated with the option-edges in the graph G. Note that
the context attraction principle does not contain any
specific strategy on how to relate weights to connection
strengths. Any strategy that assigns weight such that if
cl ≥ cj then wl ≥ wj is appropriate, where cl = c(xi, yl)
and cj = c(xi, yj). In particular, we use the strategy
where weights w1, w2, . . . , wN are proportional to the
corresponding connection strengths: wj · cl = wl · cj .
Using this strategy weight wj (j = 1, 2, . . . , N) is com-
puted as:

(4.3) wj =

{
cj/(

∑N

l=1 cl) if
∑N

l=1 cl > 0;
1
N

if
∑N

l=1 cl = 0.

For instance, for the toy database we have:

1. w1 = c1/(c1 + c2) = w3

2
/(1 + w3

2
)

2. w2 = c2/(c1 + c2) = 1/(1 + w3

2
)

3. w3 = c3/(c3 + c4) = w1

2
/(1 + w1

2
)

4. w4 = c4/(c3 + c4) = 1/(1 + w1

2
)

4.3 Determining all weights by solving equa-
tions. Given a system of equations, relating option-
edge weights as derived in Section 4.2, our goal next is
to determine values for the option-edge weights that sat-
isfy the equations. Before we discuss how such equations
can be solved in general, let us first solve the option-edge
weight equations in the toy example. These equations,
given an additional constraint that all weights should
be in [0, 1], have a unique solution w1 = 0, w2 = 1,
w3 = 0, and w4 = 1. Once we have computed the
weights, RelDC will interpret these weights to resolve
the references. In the toy example, weights w1 = 0,

6

w2 = 1, w3 = 0, and w4 = 1 will lead RelDC to resolve
‘D. White’ in both P2 and P6 to ‘Don White’.

In general case, Equations (4.3), (4.1), and (4.2)
define each option weight as a function of other option
weights: wi = fi(w). The exact function for wj is
determined by Equations (4.3), (4.1), and (4.2) and by
the paths that exist between v[xi] and v[yj] in G. Often,
in practice, fi(w) is constant leading to the equation of
the form wi = const.

The goal is to find such a combination of weights
that “satisfies” the system of wi = fi(w) equations
along with the constraints on the weights. Since a
system of equations, each of the type wi = fi(w), might
not have an exact solution, we transform the equations
into the form fi(w)−δi ≤ wi ≤ fi(w)+δi. Here variable
δi, called tolerance, can take on any real nonnegative
value. The problem transforms into solving the NLP
problem where the constraints are specified by the
inequalities above and the objective is to minimize the
sum of all δi’s. Additional constraints are: 0 ≤ wi ≤ 1,
δi ≥ 0, for all wi, δi. In [16] we argue that such a system
of equations always has a solution.

The straightforward approach to solving the result-
ing NLP problem is to use one of the off-the-shelf math
solvers, such as SNOPT. Such solvers, however, do not
scale to large problem sizes that we encounter in data
cleaning as will be discussed in Section 5. We therefore
exploit a simple iterative approach, which is outlined
below.3 The iterative method first iterates over each
reference xi.rk and assigns weight of 1

|CS[xi.rk]| to each

wj . It then starts its major iterations in which it first
computes c(xi, yj) for all i and j, using Equation (4.2).
Then it uses those c(xi, yj)’s to compute all wj ’s using
Equation (4.3). Note that the values of wj ’s will change
from 1

|CS[xi.rk]| to new values. The algorithm performs

several major iterations until the weights converge (the
resulting changes across iterations are negligible) or the
algorithm is explicitly stopped.

Let us perform an iteration of the iterative method
for the example above. First w1 = w2 = 1

2 and
w3 = w4 = 1

2 . Next c1 = 1
4 , c2 = 1, c3 = 1

4 , and
c4 = 1. Finally, w1 = 1

5 , w2 = 4
5 , w3 = 1

5 , and w4 = 4
5 .

If we stop the algorithm at this point and interpret wj ’s,
then the RelDC’s answer is identical to that of the exact
solution: ‘D. White’ is ‘Don White’.

Note that the above-described iterative procedure
computes only an approximate solution for the system
whereas the solver finds the exact solution. Let us refer
to iterative implementation of RelDC as Iter-RelDC and

3Methods different from Iter-RelDC can be used to compute an
approximate solution as well: e.g. [16] sketches another solution

which is based on computing the bounding intervals for the option

weights and then applying the techniques from [9, 8, 10].

denote the implementation that uses a solver as Solv-
RelDC. For both Iter-RelDC and Solv-RelDC, after the
weights are computed, those weights are interpreted
to produce the final result, as discussed in Section 4.
It turned out that the accuracy of Iter-RelDC (with
a small number of iterations, such as 10–20) and of
Solv-RelDC is practically identical. This is because
even though the iterative method does not find the
exact weights, those weights are close enough to those
computed using a solver. Thus, when the weights are
interpreted, both methods obtain similar results.

4.4 Resolving references by interpreting
weights. When resolving references xi.rk and deciding
which entity among y1, y2, . . . , yN from CS[xi.rk] is
d[xi.rk], RelDC chooses such yj that wj is the largest
among w1, w2, . . . , wN . Notice, to resolve xi.rk we
could have also combined wj weights with feature-based
similarities FBS(xi, yj) (e.g., as a weighted sum), but
we do not study that approach in this paper.

5 Experimental Results

In this section we experimentally study RelDC us-
ing two real (publications and movies) and synthetic
datasets. RelDC was implemented using C++ and
SNOPT solver [4]. The system runs on a 1.7GHz Pen-
tium machine. We test and compare the following im-
plementations of RelDC:

1. Iter-RelDC vs. Solv-RelDC. If neither ‘Iter-’
nor ‘Solv-’ is specified, Iter-RelDC is assumed.

2. WM-RelDC vs. PM-RelDC. The prefixes indi-
cate whether the weight-based model (WM) from
Section 4.1.2 or probabilistic model (PM) from [16],
is used for computing connection strengths. By de-
fault WM-RelDC is assumed.

In each of the RelDC implementations, the value of
L used in computing the L-short simple paths is set to
7 by default. In [16] we show that WM-Iter-RelDC is
one of the best implementations of RelDC in terms of
both accuracy and efficiency. That is why the bulk of
our experiments use that implementation.

5.1 Case Study 1: the publications dataset

5.1.1 Datasets In this section, we will introduce Re-
alPub and SynPub datasets. Our experiments will solve
author matching (AM) problem, defined in Section 2, on
these datasets.

RealPub dataset. RealPub is a real dataset con-
structed from two public-domain sources: CiteSeer[1]
and HPSearch[2]. CiteSeer can be viewed as a collec-
tion of research publications, HPSearch as a collection of
information about authors. HPSearch can be viewed as

7

a set of 〈id, authorName, department, organization〉
tuples. That is the affiliation consists of not just or-
ganization like in Section 2, but also of department.
Information stored in CiteSeer is in the same form as
specified in Section 2, that is 〈id, title, authorRef1,
. . . , authorRefN〉 per each paper. [16] contains sample
content of CiteSeer and HPSearch as well as the corre-
sponding entity-relationship graph.

���������	�
�

��������	
����

���

��������	�����

�������	�
�

��������������

������	�����

��������	�
�

������������

�����	�����

�������	�
�

�����������

����� ������

������ ����������

���������� ������������

�
�

���

���

�
������� ����������

�������������� ����������������

(a) Types of Ent./Rel.

0

20

40

60

80

100

1 2 3

P
er

ce
nt

ag
e

of
 fi

rs
t n

am
es

 id
en

tif
ie

d
co

rr
ec

tly

1: FBS
2: Solver-RelDC, L=4
3: Iterative-RelDC, L=8

35
.9

%

55
.6

% 63
.2

%

(b) Ident. first names

Figure 6: Experiments

The various types of entities and relationships
present in RealPub are shown in Figure 6(a). RealPub
consists of 4 types of entities: papers (255K), authors
(176K), organizations (13K), and departments (25K).
To avoid confusion we use “authorRef” for author
names in paper entities and “authorName” for author
names in author entities. There are 573K authorRef’s
in total. Our experiments on RealPub will explore the
efficacy of RelDC in resolving these references.

To test RelDC, we first constructed an entity-
relationship graph G for the RealPub database. Each
node in the graph corresponds to an entity of one of
these types. If author A is affiliated with department
D, then there is (v[A], v[D]) edge in the graph. If
department D is a part of organization U , then there
is (v[D], v[U]) edge. If paper P is written by author A,
then there is (v[A], v[P]) edge. For each of the 573K
authorRef references, feature-based similarity (FBS)
was used to construct its choice set.

In the RealPub dataset, the paper entities refer to
authors using only their names (and not affilia-
tions). This is because the paper entities are derived
from the data available from CiteSeer, which did not
directly contain information about the author’s affilia-
tion. As a result, only similarity of author names was
used to initially construct the graph G.

This similarity has been used to construct choice
sets for all authorRef references. As the result, 86.9%
(498K) of all authorRef references had choice set of
size one and the corresponding papers and authors were
linked directly. For the remaining 13.1% (75K) refer-

ences, 75K choice nodes were created in the graph G.
RelDC was used to resolve these remaining references.
The specific experiments conducted and results will be
discussed later in this section. Notice that the RealPub
dataset allowed us to test RelDC only under the condi-
tion that a majority of the references are already cor-
rectly resolved. To test robustness of the technique we
tested RelDC over synthetic datasets where we could
vary the uncertainty in the references from 0 to 100%.

SynPub dataset. We have created two synthetic
datasets SynPub1 and SynPub2, which emulate Re-
alPub. The synthetic datasets were created since, for
the RealPub dataset, we do not have the true map-
ping between papers and the authors of those papers.
Without such a mapping, as will become clear when
we describe experiments, testing for accuracy of ref-
erence disambiguation algorithm requires a manual ef-
fort (and hence experiments can only validate the ac-
curacy over small samples). In contrast, since in the
synthetic datasets, the paper-author mapping is known
in advance, accuracy of the approach can be tested over
the entire dataset. Another advantage of the SynPub
dataset is that by varying certain parameters we can
manually control the nature of this dataset allowing for
the evaluation of all aspects of RelDC under various
conditions (e.g., varying level of ambiguity/uncertainty
in the dataset).

Both the SynPub1 and SynPub2 datasets contain
5000 papers, 1000 authors, 25 organizations and 125
departments. The average number of choice nodes that
will be created to disambiguate the authorRef’s is 15K
(notice, the whole RealPub dataset has 75K choice
nodes). The difference between SynPub1 and SynPub2
is that author names are constructed differently: Syn-
Pub1 uses unc1 and SynPub2 uses unc2 as will be ex-
plained shortly.

5.1.2 Accuracy experiments In our context, the
accuracy is the fraction of all authorRef references
that are resolved correctly. This definition includes the
references that have choice sets of cardinality 1.

Experiment 1 (RealPub: manually checking
samples for accuracy). Since the correct paper-
author mapping is not available for RealPub, it is in-
feasible to test the accuracy on this dataset. However,
it is possible to find a portion of this paper-author map-
ping manually for a sample of RealPub: by going to
authors web pages and examining their publications.

We have applied RelDC to RealPub in order to test
the effectiveness of analyzing relationships. To analyze
the accuracy of the result, we concentrated only on the
13.1% of uncertain authorRef references. Recall, the
cardinality of the choice set of each such reference is
at least two. For 8% of those references there were

8

no xi yj paths for all j’s, thus RelDC used only
FBS and not relationships. Since we want to test the
effectiveness of analyzing relationships, we remove those
8% of references from further consideration as well. We
then chose a random sample of 50 papers that are still
left under consideration. For this sample, we compared
the reference disambiguation result produced by RelDC
with the true matches. The true matches for authorRef
references in those papers are computed manually. In
this experiment, RelDC was able to resolve all of the 50
sample references correctly! This outcome is in reality
not very surprising since in the RealPub datasets, the
number of references that were ambiguous was only
13.1%. Our experiments over the synthetic datasets
will show that RelDC reaches very high disambiguation
accuracy when the number of uncertain references is not
very high.

Ideally, we would have liked to perform further
accuracy tests over RealPub by either testing on larger
samples (more than 50) and/or repeating the test
multiple times (in order to establish confidence levels).
However, this is infeasible due to the time-consuming
manual nature of this experiment.

Experiment 2 (RealPub: accuracy of identifying
author first names). We conducted another experi-
ment over RealPub dataset to test the efficacy of RelDC
in disambiguating references, which is described below.

We first remove from RealPub all the paper entities
which have an authorRef in format “first initial +
last name”. This leaves only papers with authorRef’s
in format “full first name + last name”. Then we
pretend we only know “first initial + last name” for
those authorRef’s. Next we run FBS and RelDC
and see whether or not they would disambiguate those
authorRef’s to authors whose full first names coincide
with the original full first names. In this experiment, for
82% of the authorRef’s the cardinality of their choice
sets is 1 and there is nothing to resolve. For the rest
18% the problem is more interesting: the cardinality of
their choice sets is at least 2. Figure 6(b) shows the
outcome for those 18%.

Notice that the reference disambiguation problem
tested in the above experiment is of a limited nature –
the tasks of identifying the correct first name of the
author and the correct author are not the same in
general.4 Nevertheless, the experiment allows us to test
the accuracy of RelDC over the entire database and does
show the strength of the approach.

Accuracy on SynPub. The next set of experi-
ments tests accuracy of RelDC and FBS approaches on

4It is not enough to determine that ‘J.’ in ‘J. Smith’ corre-

sponds to ‘John’ if there are multiple ‘John Smith”s in the dataset.

SynPub dataset. “RelDC 100%” (“RelDC 80%”) means
for 100% (80%) of author entities the affiliation infor-
mation is available. Once again, paper entities do not
have author affiliation attributes, so FBS cannot use af-
filiation, see Figure 6(a). Thus, those 100% and 80%
have no effect on the outcome of FBS. Notation ‘L=4’
means RelDC explores paths of length no greater than
4.

Experiment 3 (Accuracy on SynPub1). SynPub1
uses uncertainty of type 1 defined as follows. There
are Nauth = 1000 unique authors in SynPub1. But
there are only Nname ∈ [1, Nauth] unique authorName’s.
We construct the authorName of the author with ID of
k, for k = 0, 1, . . . , 999, as “name” concatenated with
(k mod Nname). Each authorRef specifies one of those
authorName’s. Parameter unc1 is unc1 = Nauth

Nname

ratio.
For instance, if Nname is 750, then the authors with IDs
of 1 and 751 have the same authorName: “name1”, and
unc1 = 1000

750 = 1 1
3 . In SynPub1 for each author whose

name is not unique, one can never identify with 100%
confidence any paper this author has written. Thus, the
uncertainty for such authors is very high.

Figure 7 studies the effect of unc1 on accuracy
of RelDC and FBS. If unc1 = 1.0, then there is no
uncertainty and all methods have accuracy of 1.0. As
expected, the accuracy of all methods monotonically
decreases as uncertainty increases. If unc1 = 2.0,
the uncertainty is very large: for any given author
there is exactly one another author with the identical
authorName. For this case, any FBS have no choice
but to guess one of the two authors. Therefore, the
accuracy of any FBS, as shown in Figures 7, is 0.5.
However, the accuracy of RelDC 100% (RelDC 80%)
when unc1 = 2.0 is 94%(82%). The gap between RelDC
100% and RelDC 80% curves shows that in SynPub1
RelDC relies substantially on author affiliations for the
disambiguation.

Comparing the RelDC implementations. Figure 8
shows that the accuracy results of WM-Iter-RelDC,
PM-Iter-RelDC, WM-Solv-RelDC implementations are
comparable.

Experiment 4 (Accuracy on SynPub2). SynPub2
uses uncertainty of type 2. In SynPub2, authorName’s
(in author entities) are constructed such that the follow-
ing holds, see Figure 6(a). If an authorRef reference (in
a paper entity) is in the format “first name + last name”
then it matches only one (correct) author. But if it is
in the format “first initial + last name” it matches ex-
actly two authors. Parameter unc2 is the fraction of
authorRef’s specified as “first initial + last name”. If
unc2 = 0, then there is no uncertainty and the accu-
racy of all methods is 1. Also notice that the case when
unc2 = 1.0 is equivalent to unc1 = 2.0.

9

0

0.2

0.4

0.6

0.8

1

1 1.5 2 2.5 3

ac
cu

ra
cy

unc1

RelDC 100%, Iterative, L=8
RelDC 80%, Iterative, L=8

FBS
RelDC 100%, Iterative, L=4
RelDC 80%, Iterative, L=4

Figure 7: SynPub1: accuracy

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 1.5 2 2.5 3

ac
cu

ra
cy

unc1

WM, RelDC 100%, Iterative, L=4
WM, RelDC 80%, Iterative, L=4

PM, RelDC 100%, Iterative, L=4
PM, RelDC 80%, Iterative, L=4
WM, RelDC 100%, Solver, L=4

WM, RelDC 80%, Solver, L=4

Figure 8: RelDC implementations

0

10

20

30

40

50

1 1.5 2 2.5 3

tim
e(

se
cs

)

unc1

WM, RelDC 100%, Iterative, L=4
WM, RelDC 80%, Iterative, L=4

PM, RelDC 100%, Iterative, L=4
PM, RelDC 80%, Iterative, L=4
WM, RelDC 100%, Solver, L=4
WM, RelDC 80%, Solver, L=4

Figure 9: SynPub1: efficiency

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 0.2 0.4 0.6 0.8 1

ac
cu

ra
cy

unc2

RelDC 100%
RelDC 80%
RelDC 50%
RelDC 25%
RelDC 0%

FBS

Figure 10: SynPub2: Acc. vs. unc2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

ac
cu

ra
cy

frac avail. affiliation

RelDC, unc1=1.75
FBS, unc1=1.75

RelDC, unc1=2.00
FBS, unc1=2.00

RelDC, unc2=0.95
FBS, unc2=0.95

Figure 11: SynPub: affiliation

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

3 4 5 6 7 8 9

ac
cu

ra
cy

L

RelDC 100%, unc1=2.00
RelDC 100%, unc1=3.00
RelDC 100%, unc2=0.50
RelDC 100%, unc2=0.75

Figure 12: SynPub: Acc vs. L

There is less uncertainty in Experiment 4 then in
Experiment 3. This is because for each author there is
a chance that he is referenced to by his full name in
some of his papers, so for these cases the paper-author
associations are known with 100% confidence.

Figure 10 shows the effect of unc2 on the accuracy
of RelDC. As in Figure 7, in Figure 10 the accuracy de-
creases as uncertainty increases. However, this time the
accuracy of RelDC is much higher. The fact that curves
for RelDC 100% and 80% are almost indiscernible until
unc2 reaches 0.5, shows that RelDC relies less heavily
on weak author affiliation relationships but rather on
stronger connections via papers.

5.1.3 Other experiments

Experiment 5 (Importance of relation-
ships). Figure 11 studies what effect the number
of relationships and the number of relationship types
have on the accuracy of RelDC. When resolving
authorRef’s, RelDC uses three types of relation-
ships: (1) paper-author, (2) author-department, (3)
department-organization.5 The affiliation relationships
(i.e., (2) and (3)) are derived from the affiliation
information in author entities.

The affiliation information is not always available
for each author entity in RealPub. In our synthetic

5Note, a ‘type of relationship’ (e.g., paper-author) is different

from a ‘chain of relationships’ (e.g., paper1-author1-dept1-. . .).

datasets, we can manually vary the amount of available
affiliation information. The x-axis shows the fraction ρ
of author entities for which their affiliation is known. If
ρ = 0, then the affiliation relationships are eliminated
completely and RelDC has to rely solely on connections
via paper-author relationships. If ρ = 1, then the
complete knowledge of author affiliations is available.
Figure 11 studies the effect of ρ on accuracy. The
curves in this figure are for both SynPub1 and SynPub2:
unc1 = 1.75, unc1 = 2.00, and unc2 = 0.95. The
accuracy increases as ρ increases showing that RelDC
deals with newly available relationships well.

Experiment 6 (Longer paths). Figure 12 examines
the effect of path limit parameter L on the accuracy. For
all the curves in the figure, the accuracy monotonically
increases as L increases with the only one exception for
“RelDC 100%, unc1=2” and L = 8. The usefulness of
longer paths depends on the combination of other pa-
rameters. Typically, there is a tradeoff: larger values of
L lead to higher accuracy of disambiguation but slower
performance. The user running RelDC must decide the
value of L based on this accuracy/performance tradeoff
for the dataset being cleaned. For SynPub, L = 7 is a
reasonable choice.

Experiment 7 (Efficiency of RelDC). To show
the applicability of RelDC to a large dataset we have
successfully applied an optimized version of RelDC to
clean RealPub with L ranging from 2 up to 8. Figure 13
shows the execution time of RelDC as a function of the

10

1e-05

0.0001

0.001

0.01

0.1

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

tim
e(

ho
ur

s)

frac. of CiteSeer’s papers

RelDC, L=4
RelDC, L=5
RelDC, L=6
RelDC, L=8

Figure 13: RealPub: efficiency

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

ac
cu

ra
cy

frac. of uncertain references

RelDC, L=3
RelDC, L=4
RelDC, L=5

FBS

Figure 14: RealMov: director refs.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

ac
cu

ra
cy

frac. of uncertain references

RelDC, L=3
RelDC, L=4
RelDC, L=5

FBS

Figure 15: RealMov: studio refs.

fraction of papers from RealPub, e.g. 1.0 corresponds
to all papers in RealPub (the whole CiteSeer) dataset.
Notice, optimizations of RelDC are discussed only in
[16], they are crucial to achieve 1–2 orders of magnitude
of improvement in performance.

5.2 Case Study 2: the movies dataset

5.2.1 Dataset RealMov is a real public-domain
movies dataset described in [25] which has been made
popular by the textbook [13]. Unlike RealPub dataset,
in RealMov all the needed correct mappings are known,
so it is possible to test the disambiguation accuracy of
various approaches more extensively. However, Real-
Mov dataset is much smaller, compared to the Re-
alPub dataset. RealMov contains entities of three types:
movies (11, 453 entities), studios (992 entities), and peo-
ple (22, 121 entities). There are five types of relation-
ships in the RealMov dataset: actors, directors, pro-
ducers, producingStudios, and distributingStudios. Re-
lationships actors, directors, and producers map entities
of type movies to entities of type people. Relationships
producingStudios and distributingStudios map movies to
studios. [16] contains the sample graph for RealMov
dataset as well as sample content of people, movies, stu-
dios and cast tables from which it has been derived.

5.2.2 Accuracy experiments

Experiment 8 (RealMov: Accuracy of disam-
biguating director references). In this experiment,
we study the accuracy of disambiguating references from
movies to directors of those movies.

0

0.05

0.1

0.15

0.2

0.25

2 4 6 8 10 12 14 16 18 20

va
lu

e

size of choice sets

pmf

Figure 16: PMF of sizes of choice sets.

Since in RealMov each reference, including each
director reference, already points directly to the right
match, we artificially introduce ambiguity in the refer-

ences manually. Similar approach to testing data clean-
ing algorithms have also been used by other researchers,
e.g. [7]. Given the specifics of our problem, to study the
accuracy of RelDC we will simulate that we used FBS
to determine the choice set of each reference but FBS
was uncertain in some of the cases.

To achieve that, we first choose a fraction ρ of
director references (that will be uncertain). For each
reference in this fraction we will simulate that FBS part
of RelDC has done its best but still was uncertain as
follows. Each director reference from this fraction is
assigned a choice set of N people. One of those people
is the true director, the rest (N−1) are chosen randomly
from the set of people entities.

Figure 14 studies the accuracy as ρ is varied from
0 to 1 and where N is distributed according to the
probability mass function (pmf) shown in Figure 16, see
[16] for detail. The figure shows that RelDC achieves
better accuracy than FBS. The accuracy is 1.0 when
ρ = 0, since all references are linked directly. The
accuracy decreases almost linearly as ρ increases to 1.
When ρ = 1, the cardinality of the choice set of each
reference is at least 2. The larger the value of L, the
better the results. The accuracy of RelDC improves
significantly as L increases from 3 to 4. However, the
improvement is less significant as L increases from 4 to
5. Thus the analyst must decide whether to spend more
time to obtain higher accuracy with L = 5, or whether
L = 4 is sufficient.

Experiment 9 (RealMov: Accuracy of disam-
biguating studio references). This experiment is
similar to Experiment 8, but now we disambiguate pro-
ducingStudio, instead of director, references. Figure 15
corresponds to Figure 14. The RelDC’s accuracy of dis-
ambiguating studio references is even higher.

6 Related Work

Many research challenges have been explored in the
context of data cleaning in the literature: dealing with
missing data, handling erroneous data, record linkage,
and so on. The closest to the problem of reference

11

disambiguation addressed in this paper is the problem
of record linkage. The importance of record linkage is
underscored by the large number of companies, such
as Trillium, Vality, FirstLogic, DataFlux, which have
developed (domain-specific) record linkage solutions.

Researchers have also explored domain-independent
techniques, e.g. [23, 12, 14, 5, 22]. Their work can be
viewed as addressing two challenges: (1) improving sim-
ilarity function, as in [6]; and (2) improving efficiency
of linkage, as in [7]. Typically, two-level similarity func-
tions are employed to compare two records. First, such
a function computes attribute-level similarities by com-
paring values in the same attributes of two records.
Next the function combines the attribute-level similar-
ity measures to compute the overall similarity of two
records. A recent trend has been to employ machine
learning techniques, e.g. SVM, to learn the best simi-
larity function for a given domain [6]. Many techniques
have been proposed to address the efficiency challenge
as well: e.g. using specialized indexes [7], sortings, etc.

Those domain-independent techniques deal only
with attributes. To the best of our knowledge, RelDC,
which was first publicly released in [15], is the first
domain-independent data cleaning framework which ex-
ploits relationships for cleaning. Recently, in parallel
to our work, other researchers have also proposed us-
ing relationships for cleaning. In [5] Ananthakrishna
et al. employ similarity of directly linked entities, for
the case of hierarchical relationships, to solve the record
de-duplication challenge. In [19] Lee et al. develop an
association-rules mining based method to disambiguate
references using similarity of the context attributes: the
proposed technique is still an FBS method, but [19] also
discusses concept hierarchies which are related to rela-
tionships. Getoor et al. in DKDM04 use similarity of
attributes of directly linked objects, like in [5], for the
purpose of object consolidation. However, the challenge
of applying that technique in practice on real-world
datasets was identified as future work in that paper. In
contrast to the above-described techniques, RelDC uti-
lize the CAP principle to automatically discover and an-
alyze relationship chains, thereby establishing a frame-
work that employs systematic relationship analysis for
data cleaning.

7 Conclusion

In this paper, we have shown that analysis of inter-
object relationships is important for data cleaning and
demonstrated one approach that utilizes relationships.
As future work, we plan to apply similar techniques
to the problem of record linkage. This paper outlines
only the core of the RelDC approach, for more details
the interested reader is referred to [16]. Another
interesting follow-up work [18] addresses the challenge

of automatically adapting RelDC to datasets at hand
by learning how to weigh different connections directly
from the data. Solving this challenge, in general, not
only makes the approach to be a plug-and-play solution
but also can improve the accuracy as well as efficiency
of the approach as discussed in [18].

References

[1] CiteSeer. http://citeseer.nj.nec.com/cs.
[2] HomePageSearch. http://hpsearch.uni-trier.de.
[3] Knowledge Discovery. http://www.kdnuggets.com/

polls/2003/data preparation.htm.
[4] SNOPT solver. http://www.gams.com/solvers/.
[5] Ananthakrishna, Chaudhuri, and Ganti. Eliminating

fuzzy duplicates in data warehouses. In VLDB, 2002.
[6] M. Bilenko and R. Mooney. Adaptive duplicate de-

tection using learnable string similarity measures. In
SIGKDD, 2003.

[7] S. Chaudhuri, K. Ganjam, V. Ganti, and R. Motwani.
Robust and efficient fuzzy match for online data clean-
ing. In Proc. of ACM SIGMOD Conf., 2003.

[8] R. Cheng, D. Kalashnikov, and S. Prabhakar. Evaluat-
ing probabilistic queries over imprecise data. In Proc.
ACM SIGMOD Conf., 2003.

[9] R. Cheng, D. V. Kalashnikov, and S. Prabhakar.
Querying imprecise data in moving object environ-
ments. IEEE TKDE, 16(9), Sept. 2004.

[10] R. Cheng, S. Prabhakar, and D. Kalashnikov. Query-
ing imprecise data in moving object environments. In
Proc. IEEE ICDE Conf., 2003.

[11] C. Faloutsos, K. McCurley, and A. Tomkins. Fast
discovery of connection subgraphs. In SIGKDD, 2004.

[12] I. Fellegi and A. Sunter. A theory for record linkage.
J. of Amer. Stat. Assoc., 64(328):1183–1210, 1969.

[13] H. Garcia-Molina, J. Ullman, and J. Widom. Database
systems: the complete book. Prentice Hall, 2002.

[14] M. Hernandez and S. Stolfo. The merge/purge prob-
lem for large databases. In Proc. of SIGMOD, 1995.

[15] D. Kalashnikov and Mehrotra. Exploiting relationships
for data cleaning. TR-RESCUE-03-02, Nov. 2003.

[16] D. Kalashnikov and S. Mehrotra. Exploiting rela-
tionships for domain-independent data cleaning. Ex-
tended Version of SIAM Data Mining 2005 publication,
http://www.ics.uci.edu/∼dvk/pub/sdm05.pdf.

[17] D. V. Kalashnikov and S. Mehrotra. RelDC project.
http://www.ics.uci.edu/∼dvk/RelDC/.

[18] D. V. Kalashnikov and S. Mehrotra. Learning im-
portance of relationships for reference disambiguation.
Submitted for Publication, Dec. 2004. http://www.
ics.uci.edu/∼dvk/RelDC/TR/TR-RESCUE-04-23.pdf.

[19] M. Lee, W. Hsu, and V. Kothari. Cleaning the spurious
links in data. IEEE Intelligent Systems, Mar-Apr 2004.

[20] R. Little and D. Rubin. Statistical Analysis with
Missing Data. John Wiley and Sons, 1986.

[21] J. Maletic and A. Marcus. Data cleansing: Beyond
integrity checking. In Conf. on Inf. Quality, 2000.

[22] A. K. McCallum, K. Nigam, and L. Ungar. Efficient
clustering of high-dimensional data sets with applica-
tion to reference matching. In ACM SIGKDD, 2000.

[23] Newcombe, Kennedy, Axford, and James. Automatic
linkage of vital records. Science, 130:954–959, 1959.

[24] S. White and P. Smyth. Algorithms for estimating
relative importance in networks. In SIGKDD, 2003.

[25] G. Wiederhold. www-db.stanford.edu/pub/movies/.

12

